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ABSTRACT

A mathematical model to study the effect of seasonal weather variation on the dynamics of
plague disease is developed and analyzed. Apart from being historical, plague disease caused
by a gram negative bacteria called Yersinia pestis is still considered as a major threat around the
world. In this work we investigate three main forms of plague disease which are bubonic, sep-
ticemic and pneumonic plague. It gives answers to various questions that relate to the complex
dynamics of plague disease and the effect of seasonal weather variation in its transmission and
spread. In particular we give answers to mainly four questions pertaining to the formulation
and analyses of the mathematical models of bubonic Plague, formulation and analysis of the
mathematical models of pneumonic plague, formulation and analysis of the combined mathe-
matical model for the dynamics of plague disease that includes all three forms of plague disease
and all major ways/modes of plague disease transmission. Lastly we formulate and analyze the
plague disease model incorporating parameters that are affected by seasonal weather variation
and study its effects on the dynamics of plague disease.

Using ordinary differential equations, we formulate a model for the dynamics of plague disease
in four settings namely: Human beings, Rodents, Fleas and Pathogens in the environment. We
compute the basic reproduction numbers and apply them to establish the conditions for local
and global stability of both disease free and endemic equilibrium points. We further assess
the effect of seasonal weather variation, in which we modify the transmission rates and take
them as sinusoidal functions. Using fundamental existence-uniqueness theorem, we were able
to prove the existence of positive periodic solutions. We then establish the conditions for local
and global stability of both Positive Periodic Solution (PPS) and Disease Free Solution (DFS).

The results show that the transmission and dynamics of bubonic plague are dictated by: the
rate at which �eas get infected; the infectious periods of �eas, rodents and human beings;
the probability that rodents and human beings survive the infected class; and the adequacy
of contact rates and the rate at which human beings and rodents become exposed to bubonic
plague disease. We also found that the environment condition, the abundance of pathogens in
the environment and the increase of the number of individuals with pneumonic plague greatly
in�uence the increase of pneumonic plague disease infectives. In the combined model, we
found that the variation in number of plague disease cases mainly depend on: the transmission
rate of infection from one individual to another; the incubation period of an individual and the
time that an individual remains infectious. The analysis further reveals that the effects posed
by seasonal weather variation depends on the extent to which the weather variation favours the
transmission of plague disease (amplitude of seasonality) and the duration that it remains in
favour of the increase or decrease of the rate of disease transmission and spread. Therefore the
control strategies should target these factors and parameters (the transmission rate of infection
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from one individual to another, the incubation period of an individual and the time that an
individual remains infectious) that according to our results stated above have shown to have a
signi�cant effect on the dynamics of plague disease.

We thus recommend to the government, national security system and other health stake holders
that in order to have an effective way of controlling the disease we must ensure that there is
provision of education on plague disease infection, transmission and spread to raise peoples
awareness, continuous monitoring of factors that may lead to plague outbreak, easy access of
plague disease treatment for all and the strong collaboration with neighboring countries on
health related issues.
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CHAPTER ONE

Introduction

1.1 Background

In recent years, the issue of emerging and re-emerging infectious diseases has progressively
become of great concern in public health (Watch, 2014, accessed March 14, 2016). These days
Infectious diseases threaten us with the fear of death which as a result dictate social behaviors
and policy decisions at individual, national and international levels (Aginam, 2005). Most of the
infectious diseases like plague, HIV, Ebola haemorrhagic fever, Marburg fever and others are
evolving at an extraordinary rate, often with the ability to cross geographical borders rapidly
and spread (Liu et al., 2014). This makes infectious diseases a global concern as they pose
universal vulnerability, which call for a global solidarity to plan for the way forward to a better
future.

The exceedingly itinerant, mutually dependent and interconnectedness that characterize the
world today, pave a way to numerous opportunities for the rapid spread of infectious diseases.
The spread of infectious diseases nowadays is much faster compared to other times in history
(Tatem et al., 2006). Due to human mobility today, it is said that if there is an outbreak or epi-
demic in any one part of the world, it is only a few hours away from becoming a pending threat
somewhere else (Newman, 2002). In addition, the zoonotic nature of most of the pathogens and
ability of viruses, bacteria and parasites to change over time makes the infectious diseases very
dif�cult to combat. That is why, despite the magni�cent growth of antibiotics and vaccines,
infectious diseases are still reported as the second leading cause of death worldwide next to
cardiovascular diseases (Fauci et al., 2005; Bennett et al., 2014).

Plague is a zoonotic infection and serious bacterial disease that can be deadly. The disease
is caused by bacteria called Yersinia pestis a pleomorphic, gram-negative non-spore-forming
coccobacillus that is more accurately classi�ed as a subspecies of Y pseudotuberculosis, named
after the French-Swiss bacteriologist Alexandre Yersin. These bacteria are found in animals
throughout the world. They mainly infect rats and other rodents which are the prime reservoirs
for the bacteria. Due to the unrivaled scale of death and devastation it brought, plague disease
remains to be notorious and a threat to human societies throughout history (Jackson, 1916;
Devaux, 2013).
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1.1.1 Historical background of Plague disease

Plague disease has an extraordinary place in history. It led to mammoth effects on the develop-
ment of modern civilization. Due to the fact that the causes of plague disease were unknown
it presented a disaster for people in different parts of the world which contributed to enormous
fear in areas where it appeared (Benedictow, 2004; CDC, accessed January 10, 2016). There
have been three great world pandemics of plague disease that caused devastating mortality of
people and animals across the globe.

The �rst undeniable great pandemic of plague disease is the Great Plague of Justinian that
occurred around AD 532 in Egypt and spread through the Middle East and the Mediterranean
basin and then spread farther to Turkey, Constantinople, Greece, Italy, and the territories of
France and Germany (Zietz and Dunkelberg, 2004). It is estimated that between 50% and 60%
of the total population in North Africa, Europe, and central and southern Asia was lost (Perry
and Fetherston, 1997)

After the �rst great pandemic, many other smaller outbreaks followed for the following two
centuries; thus linking the �rst and second great pandemics of plague (Prasad, 2009). The
second plague disease pandemic, also known as the Black Death or Great Pestilence, occurred
in 1334 in different cities of China and India (Ziegler, 2013). The disease was spread to different
places by the infected rodents and human, and from country to country by ships. It killed nearly
20 to 30 million people in Europe which was equivalent to more than one third of the European
population at that time (Slack, 1989).

The third and last great plague pandemic occurred in Canton and Hong Kong in 1894. Just
after the occurrence of the third pandemic, different countries started to investigate the origin
of the disease and how to get rid of it. Among them was Japan and France that dispatched
a commission including the bacteriologist Shibasaburo Kitasato and Alexandre Yersin respec-
tively (Riedel, 2005). They ultimately identi�ed a new bacterium from tissues found from dead
rodents and human beings. Although it is possible that Kitasato was the �rst to describe the new
organism, Yersin’s description and explanations seemed to be more accurate, with all striking
characteristics of the disease emphasized (Treille and Yersin, 1894). This is the reason why
in 1970, the bacteria causing plague disease was named Yersinia pestis as a recognition of his
signi�cant contribution (Perry and Fetherston, 1997).

Since its discovery in the 16 century AD in Egypt and then other parts of the world e.g. Syria,
North Africa, and much of Europe, Plague still exists in different parts of the world. It is widely
distributed in the tropics and subtropics and in warmer areas of temperate countries. However,
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most of the plague cases today occur in Africa as most of her people do not have access to
antibiotics. The reported plague cases in sub-Saharan Africa and Madagascar, account for over
95% of all reported cases (Stenseth et al., 2008). For instance in 2003 there were about 2,100
human cases and 180 deaths mostly in Africa. Also in 2006 at least 50 people died due to
plague disease in the Democratic Republic of the Congo in Central Africa (Meerburg et al.,
2009). Until June 2007, plague was one of the three epidemic diseases speci�cally reportable
to the World Health Organization (the other two being cholera and yellow fever) (Dennis and
Staples, 2009; Society, accessed May 02, 2016).

In East Africa, the �rst outbreak is said to have occurred in Mombasa, Kenya in 1697 from
Oman (Neerinckx et al., 2010; Ziwa et al., 2013). However, the earliest plague infection in
East Africa was recorded in Uganda in 1877. The outbreak was reported by missionaries who
also noted that the disease was already locally known by the Buganda people as �kawumpuli�
(Orochi Orach, 2002; Eisen et al., 2010). In Tanzania, Plague disease is informally believed to
have been introduced from Middle East or India by various traders and slaves from Egypt and
Saudi Arabia (Laudisoit et al., 2007). However, historical data shows that there is a possibility
that plague already existed in the Kagera area long before the 1887 outbreak. The local peo-
ple were already aware of the disease and referred to it as a sporadic disease, locally known
as �rubunga� (Kilonzo et al., 2005). Figure 1 depicts the plague introduction and spread in
Tanzania:

Figure 1: Plague introduction and spread in Tanzania (Ziwa et al., 2014)
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1.2 Epidemiology of plague disease

Plague bacteria in most cases are transmitted through the bite of an infected �ea. When plague
affect non-human animals (epizootics), speci�cally rodents in a particular area, causes massive
loss of rodents. This cause hungry �eas to �nd other sources of blood. When human beings
and other animals visit places where rodents have recently died from plague are at risk of being
plague infectives as a result of �ea bites (Benedictow, 2004). Mice, rats, rabbits, squirrels,
chipmunks, prairie dogs and other domestic animals may also bring plague-infected �eas into
the home. The study by Scott and Duncan (2001) postulates that transmission of the plague to
people can also occur from eating infected animals such as squirrels and other infected domestic
animals. Once an individual has the plague bacteria in his/her lungs, depending on the sanitary
conditions, the bacteria can be spread via aerosol droplets. Other ways are by direct contact
and contacting the contaminated undercooked food or materials. Below is the summary of the
different modes of transmission of plague diseases:

(i) Direct physical contact: Touching an infected person, including sexual contact;

(ii) Vector borne transmission: Carried by insects; the Flea in particular;

(iii) Airborne transmission: droplet contact via coughing or sneezing on another person, �
if the microorganism can remain in the air for long periods;

(iv) Indirect contact: by eating infected animals, touching contaminated soil or a contami-
nated surface, fecal-oral transmission � usually from contaminated food or water sources.

1.2.1 Forms of Plague disease

Plague disease may occur in different forms; however there are three main forms of plague
disease. These forms differ in their symptoms, way they are transmitted, parts of the body that
they affect and severity of the infection (Crook and Tempest, 1992; Burkle et al., 1973). These
forms are as given below:

(i) Bubonic Plague
The most common form of plague is bubonic plague. It is usually contracted when an
infected �ea bites a susceptible individual (human beings, rodents or other domestic ani-
mals). In rare cases, one can get the bacteria causing bubonic plague disease from material
that has come into contact with an infected individual. Bubonic plague infect lymphatic
system (immune system), causing in�ammation of lymphoid organs such as the spleen
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and the thymus. If not treated bubonic plague, can move into the bloodstream and cause
septicemic plague, or to the lungs, causing pneumonic plague.

Bubonic Plague Symptoms: Symptoms of bubonic plague generally appear within two
to seven days and include: Fever and chills, headache, muscle pain, general weakness and
seizures. One may also experience painful swollen lymph glands called buboes, which
appear in the groin, armpits, neck, or site of the insect bite or scratch. The buboes are
what give bubonic plague its name.

(ii) Pneumonic Plague
It is the serious form of the plague disease which occur when the bacteria multiply in the
lungs. It can be transmitted through airborne transmission in which, a susceptible indi-
viduals with lungs breath in the air containing bacteria. When a person with pneumonic
plague coughs, the bacteria from their lungs are expelled into the air. Depending on the
weather condition these released bacteria may stay infectious in the air for a very long
time.

Pneumonic Plague Symptoms: Pneumonic plague symptoms may appear as quickly as
one day after exposure to the bacteria and include: dif�culty with breathing, chest pain,
cough, fever, headache, overall weakness and bloody sputum (saliva and mucus or pus
from the lungs).

(iii) Septicemic Plague
This form of the plague disease occurs when the bacteria multiply in the bloodstream. It
can be transmitted through physical contact that involves touching the infected individual
including sexual contact, bite by the infected �ea, eating the infected animals, touch-
ing contaminated soil or a contaminated surface and fecal-oral transmission. Untreated
septicemic plague may graduate to pneumonic plague.

Septicemic Plague Symptoms: Symptoms usually start within two to seven days after
exposure. Septicemic plague can lead to death before symptoms even appear. Symptoms
includes: abdominal pain, diarrhea, nausea and vomiting, fever and chills, weakness,
bleeding (blood may not be able to clot) and shock.

Without medical intervention, about 50 percent of people who have bubonic and septicemic
plague and almost 100 percent of people with pneumonic plague die. Treatment reduces the
death rate to 50 percent for both varieties (Antolin et al., 2002). Plague can lead to gangrene if
blood vessels in an individual’s �ngers and toes disrupt blood �ow and cause death to tissue. In
rare cases, plague can cause an in�ammation of membranes that surround an individual’s spinal
cord and brain known as meningitis.
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Plague outbreaks are most common in rural areas and in areas characterized by overcrowding,
poor sanitation and a large rat population. In human beings the risk of developing plague de-
pends on one’s lifestyle and the surrounding environment (Inglesby et al., 2000). For example,
the nature of occupation one has may increase the risk of getting plague disease. Veterinarians
and their assistants have a higher risk, as most of their time they work close to animals which
may have been infected with plague bacteria. Hobbies like camping, hunting or hiking in areas
where there are animals that are infected can increase one’s risk of being bitten by an infected
�ea or contacting with the contaminated materials or environment (Poland and Dennis, 1998).
Other factors that may also increase risk of plague disease infection transmission are pet own-
ership, direct contact with animal-reservoir especially during the hunting season and living in
one house with an infected individual (Cleri et al., 1997).

Despite being a historical disease, plague disease continues to be a threat and is endemic in
many natural foci around the world. Using the data from WHO there are approximately 1000
- 3000 cases per year of the plague disease, distributed mostly between Africa, South America
and Asia. Recent outbreaks have justi�ed that plague disease may reoccur in areas that have
long remained silent (Andrianaivoarimanana et al., 2013). This behavior makes plague a global
and all time threat that should be prioritized and given a special attention by all health stake
holders around the world.

1.3 Plague disease as bio-weapon

Throughout history, plague disease has been one of the most shocking epidemic diseases to
mankind (Morens et al., 2008). The vast transmission capability, the capacity for mass pro-
duction, aerosol dissemination, high fatality rate and the potential for rapid secondary spread,
makes plague disease as very devastating infectious disease and gives it a great potential of
being used as a bio-weapon (Meyer et al., 2014; Balali-Mood et al., 2013). In 20th century,
countries including the United States, Japan and Rusia (the former Soviet Union,) industrial-
ized ways for using plague bacteria as a weapon (Borio, 2005). This has raised concern and
it is now considered as a very important national security threat as it can be used by terror-
ists (Nikoleli et al., 2016). As a bio-weapon, plague disease may be applied through different
warfare strategies that includes catapulting corpses over walls, dropping infected �eas from
airplanes and aerosolizing the bacteria (Riedel, 2004).

The threat posed by plague disease as bio-weapon depends on the number of biological agent
released for an attack and the environmental conditions. Yersinia pestis has an extraordinary
ability to overcome the defense mechanisms of mammalian hosts and to devastate them with
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enormous growth (Cornelis, 2000). When plague disease is used as a weapon, the infection
would differ signi�cantly from the one that occurs naturally. For example when the bacteria are
to be released as an aerosol will result to pneumonic plague and the symptoms may be serious
as those of the severe respiratory infections (Pechous et al., 2016).

1.4 Plague disease and Weather Variation

The combined effects of rapid demographic change, environmental, social, technological and
others that we experience today, dictates our ways-of-living. This also consequently affect the
dynamics, occurrence and the re-occurrence of infectious diseases which challenge the tradi-
tional plans and strategies to control infectious diseases (Patz et al., 2000). Weather varia-
tion affect most of the important determinants of plague disease transmission (Xu et al., 2011;
Parham et al., 2011; Altizer et al., 2013). These include rodent’s, pathogen’s and �ea’s sur-
vival, reproduction and death rates, the �ea’s biting rate, the pathogen’s incubation rate within
�ea and human being, rodent and �ea immigration rates (Gubler et al., 2001). Others are: Flea,
pathogens and hosts (human beings, rodents and other domestic animals) each survive and
reproduce within a range of optimal weather conditions. We consider temperature, humidity,
rainfall and precipitation as the most important weather elements that affects the transmission of
plague disease. The effect posed by these elements of weather affect to a great extent the plague
disease cycle and as a result affect the transmission and spread of plague disease (Relman et al.,
2008).

1.5 Motivation of the Study

Different studies have been carried out with the aim of understanding the plague disease in
terms of the factors that led to the occurrence of the disease and its dynamics. The aim is to
develop proper ways of controlling and overcoming the epidemic when it occurs. However,
most of these studies considered vector borne transmission as the only way of transmission of
plague and did not consider other major modes of transmission through direct physical contact,
airborne transmission and indirect contact.

There are few studies that considered other agents apart from the vector �ea in plague transmis-
sion but most of them did not consider the enzootic cycles in non-human hosts, and for those
that did they assumed non-human hosts as being incapable of transmitting plague disease. Most
studies consider non-human hosts as a reservoir of the Yersinia pestis that will be taken to hu-
man beings through a vector �ea. Moreover, although most of the parameters that dictate the
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transmission and spread of plague disease are affected by seasonal weather variation, available
studies have not exhaustively analyzed mathematically the effect of seasonal weather variation
in the dynamics of plague disease. It is then extremely important to study dynamics of plague
disease that includes the parameters that are affected by of seasonal weather variation.

Even though the number of human infected by plague disease is not high, it would be a blunder
to ignore the menace posed to humanity, because of the disease inherent communicability, rapid
spread, rapid clinical course, and high mortality if left untreated (Mack et al., 2008). It is then
wise to have a comprehensive study in terms of occurrence, transmission and spread for the
design of proper control strategies, effective plans to reduce its impact and ultimately eradicate
the disease. Regardless of the available studies and �ndings on plague disease the disease still
exist and kills millions of people and animal around the world. This justi�es that there is a
strong need of a study that will address the disease by covering some of the missing aspects.

1.6 Statement of the problem

Available studies lack one or more of the following: most of them considered vector borne
transmission as the only way of transmission of plague, did not consider non-human hosts as
potential agents of plague transmission, the role of environment in the transmission and spread
of plague disease. In this study, we explore the mathematical modeling of the dynamics of the
plague infections. We consider human host, non-human host and environment as plague disease
transmission agents. We consider possible ways/modes of transmission of plague disease which
are mainly direct physical contact, vector borne transmission, airborne transmission and indirect
contact with respect to the features of the form of plague disease one has. We also extend our
study to cover the effect of the parameters that may be affected by seasonal weather variation
on the dynamics of the plague disease. We then develop a generic plague model (the model that
combine all three forms of plague disease) that considers all factors that enable plague disease
transmission including that of seasonal weather variation in order to extensively understand
the dynamic of plague disease. We analyze the model to explain the conditions for existence,
persistent and extinction of the disease, the stability and existence of positive periodic solution,
disease-free equilibrium and the system’s behavior through numerical simulation.

1.7 Research Objective

In order to answer the stated problem we set the general objective, speci�c objectives and re-
search questions as given below:
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1.7.1 General Objective

The main objective of this study was to develop a fully bodied mathematical models to study
the dynamics of plague disease, and asses the effect of seasonal weather variations on its trans-
mission.

1.7.2 Speci�c Objectives

The speci�c objectives of this study were:

(i) To formulate and analyze basic mathematical models for bubonic plague dynamics and
explore its behavior using numerical simulations

(ii) To formulate and analyze basic mathematical models for pneumonic plague dynamics
and explore its behavior using numerical simulations.

(iii) To formulate and analyze the basic combined deterministic mathematical model for the
dynamics of plague disease that will include all three forms of plague disease and all
major ways/modes of plague disease transmission

(iv) To formulate and analyze the plague disease model incorporating with parameters that
are affected by seasonal weather variation.

1.7.3 Research Questions

The study was guided by the following research questions:

(i) What are the modes of interspecies transmission of bubonic, pneumonic and Septicemic
plague disease?

(ii) How can the mathematical model for dynamic of bubonic plague disease be formulated?

(iii) How can the mathematical model for dynamic of bubonic plague and pneumonic plague
disease be formulated?

(iv) How can the combined deterministic mathematical model for the dynamics of plague
disease that will include all three forms of plague disease and all major ways/modes of
plague disease transmission be formulated?
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(v) What seasonal factors affect the dynamics and transmission and of plague disease?

(vi) How can the mathematical model that includes the effect of seasonal variation in the
dynamics of plague disease be formulated?

(vii) Are the equilibrium points of the formulated models locally and globally asymptotically
stable?

(viii) Under what conditions does the endemic equilibrium (EE) exist?

(ix) Under what conditions does the positive periodic solution exist?

1.8 Structure of the Dissertation

The dissertation involves several phases of analysis which are organized in chapters as follows:

Chapter 2: In this chapter, we study the features and characteristics of bubonic plague in order
to determine its major ways of transmission and spread. We then use the results to formulate
the bubonic plague disease model that exhaust possible ways of transmission. We then analyze
the dynamics of the model and determine its behavior through numerical simulation.

Chapter 3: This chapter presents the stability analysis of the model formulated in Chapter Two.
We determine the conditions under which the disease free and endemic equilibrium points are
locally and globally asymptotically stable.

Chapter 4: We study the features and characteristics of pneumonic plague to understand all
possible ways in which it can be transmitted. Then, based on the characteristics of pneumonic
plague and the link it has with bubonic plague, we formulate the pneumonic plague disease
model that also includes currently known factors that link it with bubonic plague. We then
analyze the model, determine its behavior using numerical simulations and study the conditions
for stability of its equilibrium points.

Chapter 5: In this chapter, we �rst explore the features and characteristics of septicemic plague
speci�cally its ways of transmission and spread. We then include these feature in the model
formulated in Chapter Four to get a plague disease model. This model includes all three forms
of plague disease namely Bubonic plague, septicemic plague and pneumonic plague. We then
analyze the model and determine the conditions for its stability, the main factors that control its
dynamics and behavior .

Chapter 6: In this chapter, we formulate the plague disease model that incorporates the param-
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eters that are affected by seasonal weather variation. We analyze the model to determine feasi-
ble region, we then de�ne and compute the time-average basic reproduction number. Through
numerical simulations we show that the average number of secondary cases of plague disease
depend on progression rates from one primary form to a secondary form of plague infection,
�ea’s infection rate and the vector �ea abundance. Based on the illustration, we suggest different
ways to control transmission and spread of plague disease.

Chapter 7: In this chapter, we analyze the global dynamics of plague disease model with
seasonal transmission rate. We use the basic reproduction number to establish the conditions
for global stability of disease free equilibrium solution. We then use fundamental existence-
uniqueness theorem to prove the existence of positive periodic solutions. We further establish
the conditions for global stability of periodic solutions of the model and �nally using numerical
simulations we validate the analytical solutions.

Chapter 8: This chapter gives the general summary, conclusion and recommendations of the
whole study. Using the parameters that de�ne the basic reproduction number, we also point out
control strategies that may be used to control plague disease and suggest the possible ways in
which this study can be extended.
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CHAPTER TWO

Modeling the Dynamics of Bubonic Plague with Yersinia Pestis in the Environment 1

Abstract: Bubonic plague is an infectious disease that is caused by the bacteria Yersinia pestis
when it affects a part of circulatory system namely lymphatic system. It is mainly transferred
between populations through �ea bites. In this chapter, we develop a deterministic model that
includes four compartments namely Human beings, Rodents, Fleas and pathogens in the en-
vironment to study the dynamics and spread of bubonic plague. The model is analyzed to
determine the role and magnitude of the in�uence of each the four sub-populations in the trans-
mission and spread of the disease. We use the next generation method to �nd the disease thresh-
old R0. A sensitivity analysis is carried out to determine the most, medium and least sensitive
model parameters that negatively or positively affect the basic reproduction number. The result
reveals that the probability at which �ea become infected (�) has the biggest in�uence on the
basic reproduction number R0. Other signi�cant parameters are adequate contact rates (�fh),
(�hf ), (�fr), (�fr) and (�rf ); probability that human and rodent become exposed to the disease
(�1) and (1) respectively; progression rates (�2) and (2); and the pathogens in the environment
under condition that the their survival is favored by the environment. The numerical simulations
results are in agreement with the analytical solutions. Based on our results, we recommend that
control strategies should target parameters that have shown to have a signi�cant contribution to
the increase of the basic reproduction number R0.

Keywords: Bubonic Plague; Pathogens in the environment; Stability and Sensitivity analysis.

2.1 Introduction

2.1.1 Background

Tanzania is one of the countries that has been and still is heavly affected by plague disease for
over 127 years. In most parts of Tanzania, the disease is still endemic and some tangible efforts
need to be made to be able to eradicate this historical threat (Kilonzo et al., 1992; Ziwa et al.,
2014). In this chapter, we study the dynamics of bubonic plague Bubonic plague diseases which
occurs when the bacteria (Yersinia pestis) infects the lymphatic system (immune system), caus-
ing in�ammation of lymphoid organs such as the spleen and the thymus (Crook and Tempest,
1992; Stenseth et al., 2008).

1This chapter is based on the research paper: Ngeleja, R. C., Luboobi, L. S., & Nkansah-Gyekye, Y. (2016).
Modelling the dynamics of bubonic plague with Yersinia pestis in the environment. Communications in Mathe-
matical Biology and Neuroscience, 2016, Article-ID 10.
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Bubonic plague is the most common form of plague disease. It is a severe infectious feverish
disease characterized by chills, prostration, delirium, and formation of buboes. It is transmitted
to humans mainly by the bite of a �ea that has bitten an infected rodent or human being and
very rarely when infected rodent bite a susceptible human being (Parmenter et al., 1999).

In a few other cases, one can get the bacteria from the environment by touching and/or eating in-
fected material and contaminated undercooked food or animals that have come into contact with
an infected individual (Scott and Duncan, 2001). If not treated, the bacteria causing bubonic
plague, may move into the blood and cause septicemic plague, or to the lungs, causing pneu-
monic plague (Emmeluth and Alcamo, 2009; Benedict, 1996).

Symptoms of bubonic plague generally appear within two to seven days after exposure and
include: Fever and chills, headache, muscle pain, general weakness and seizures. Infected
individuals may also experience painful swollen lymph glands called buboes, these typically
appear in the groin, armpits, neck, or site of the insect bite or scratch. The buboes are what give
bubonic plague its name (Wing�eld and Palmer, 2009).

2.1.2 Transmission and infection

When the Yersinia pestis are in the �ea’s stomach, they multiply themselves making millions
of copies, which in due course block the �ea’s digestive system. This makes it incapable of
swallowing the blood it feeds on and as a result it gradually causes the hungry �ea to become a
ravenous biter. Due to this, the �ea will attempt to feed on any warm-blooded animal that it can
possibly reach and it switches hosts frequently as it searches for a blood meal. Every time it
bites, it swallows some blood, but since the �ea’s stomach is so full of Yersinia pestis, it vomits
up the blood along with some Yersinia cells and as a result the cells get inserted right into the
new host (Moore, 2007).

During plague epizootics, many rodents die, causing hungry �eas to seek other sources of blood.
Thus, people and other animals like Mice, rats, rabbits, squirrels, chipmunks, and prairie dogs
that visit places where rodents have recently died from plague are at risk of being infected from
�ea bites (Eisen and Gage, 2009; Drancourt et al., 2006; Perry and Fetherston, 1997; Echenberg,
2007). Bubonic plague can lead to gangrene if blood vessels in an individual’s �ngers and toes
disrupt blood �ow and cause death to the tissue. In rare cases, any form of plague disease may
cause meningitis, which is an in�ammation of membranes that surround the individual’s spinal
cord and brain (Antolin et al., 2002).

Although plague disease (bubonic plague) is historical disease, it is still endemic in different
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communities around the world. This persistence feature of plague disease makes it different
from many historical diseases and thus arouse the need for different studies of the same. Seb-
bane et al. (2005) developed a model of bubonic plague using the inbred Brown Norway strain
of Rattus norvegicus to characterize the development and dynamics of infection and the host
immune response after intradermal inoculation of Yersinia pestis. The model was also used to
characterize the temporal development of histopathology and cellular immune response in the
spleen and lymph nodes, and thus evaluate hypothesized mechanisms of Y. pestis pathogenesis
and immune evasion during infection. The study made a milestone for studies that relate to mi-
crobial pathogenesis, host response, and the ef�cacy of new medical countermeasures against
plague.

Keeling and Gilligan (2000b) also developed a stochastic, spatial metapopulation model to study
the dynamic of plague disease by proposing that bubonic plague is driven by the disease dy-
namics in the rat population. The study further postulates that bubonic plague can continue in
relatively small rodent populations from which rare human being epidemics arise, this is why
historically the plague persisted despite long disease-free periods and why the disease reappears
in cities even those with tight quarantine control. The study based its �ndings in the rodent pop-
ulation and speci�cally the metapopulation behavior of rodent population.

Keeling and Gilligan (2000a) developed a model for bubonic plague that includes the disease
dynamics in rat, �ea and human populations. The spread of infections depends on the force of
infection to humans, variation in the �ea searching ef�ciency and the movement rates of rats
and �ea. The study also discussed the stochastic behaviour of the corresponding metapopulation
model. They intended to study the dynamics of rats and the force of infection at the local spatial
scale and identify the criteria for the spread to human populations in terms of the rat density.
The study found that, Short-lived local epidemics in rats govern the transmission and spread
and the endemic behavior in a few rat sub-populations allows the disease to persist for many
years.

In this research work we study the dynamics of bubonic plague and the effect of survival of
bacteria in the environment, the study uses deterministic mathematical modeling approach, in
which the bubonic plague disease model is formulated and analyzed with the ultimate goal
of understanding the dynamics of bubonic plague disease and its force of infection to human
beings, rodents and �eas.
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2.2 Material and Methods

The basic SEIR (Susceptible-Exposed-Infectious-Recovered) model is used with modi�cation
depending on the characteristics of the considered population and transmission network of
bubonic plague disease. The model has four general groups; the human population, �ea pop-
ulation, rodent population and pathogens in the environment. In all four groups, the model
assume that all individuals from each population are born susceptible, there is no recovery for
non-human host and the recovered individuals are conferred temporary immunity and return to
be susceptible.

2.2.1 Description of the dynamics of bubonic plague in interactive population

We consider four populations namely Human beings, Fleas, Rodents and the pathogens in the
environment. Within human beings the population is divided into four sub-groups: the group of
people who have not contracted the disease but may get it if they get in contact with the infec-
tious agent (susceptible) SH , people who have the disease but have not shown any symptom and
are incapable of transmitting the disease(Exposed) denoted by EH , people who are infected and
are capable of transmitting the disease (Infective) denoted by IH and people who are removed
from population IH through recovery denotedRH . Fleas are divided into two sub-groups: those
who have not contracted the disease but may get it if they get in contact with infectious rodents
or human beings (susceptible) SF and those who are infected and are capable of transmitting the
disease (Infective) denoted by IF . The rodent population is also divided into three sub-groups:
those who have not contracted the disease but may get it if they get in contact with infectious
agent (susceptible) SR, those who have the disease but have not shown any symptom and are
incapable of transmitting the disease (Exposed) denoted by ER and those who are infected and
are capable of transmitting the disease (Infective) denoted by IR.

The infection begins when �ea in sub-group SF gets Yersinia pestis bacteria by either biting the
infected rodent who are the primary reservoir of the bacteria at a rate �rf or biting the infected
human being at the rate �hf with the proportional of � and (1��) respectively. The susceptible
�ea then become infected IF , and may cause the disease through biting the susceptible human
being SH and the susceptible rodent SR at the rate �fh and �fr respectively. The probability of
human beings and rodents to become latent to the disease thus progresses to be exposed human
EH and exposed rodent ER are �1 and 1 respectively. After two to seven days, the sub-groups
EH and ER become infected and capable of transmitting the disease and thus progress to sub-
group IH and IR at the rate �2 and 2 respectively.
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A fraction of infected human beings IH may recover and attain temporary immunity at a rate �3

and thus progress to a sub-group RH which thereafter return to a sub-group SH at the rate $.
Those who do not recover die either for natural death at the rate �1 and due to the disease at the
rate �1. After the infection, all the infected rodents IR die out due to disease at the rate �3 and
naturally at a rate �3. The pathogen within the environment will upon interaction with SH and
SR cause infections at the rate !1 and !2 respectively. However, they are recruited through birth
at the rate �4 and they suffer natural mortality at a rate �4. The human population in sub-groups
SH and EH , �ea population in sub-group SF and rodent population in sub-groups SR and ER
all suffer natural mortality at a rate �1; �2 and �3 respectively.

The compartments IH ; IF and IR suffer both natural death at the rate �1; �2 and �3 and disease
induced mortality at rates �1; �2 and �3 respectively. The Human beings, rodents and �eas are
recruited through immigration at the rates  1,  2s and  3 respectively.

2.2.2 Variables and Parameters

The variables and parameters used in the model are summarized in Tables 1 and 2 respectively.

Table 1: Variables and their description for bubonic plague.

Variable Description

SH Susceptible individuals
EH Exposed individuals
IH Infected individuals
RH Recovered individuals
SR Susceptible rodents
ER Exposed rodents
IR Infected rodents
SF Susceptible �eas
IF Infected �eas
A Pathogens in the environment

16



Table 2: Parameters and their description for bubonic plague.

Parameters Description

�rf Adequate contact rate: rodent to �ea
�fh Adequate contact rate: �ea to human
�fr Adequate contact rate: �ea to rodent
�1 Probability that human progress from SH to EH
1 Probability that rodent progress from SR to ER
�hf Adequate contact rate: human to �ea
�4 Recruitment rate of pathogens
�2 Progression rate of exposed human to infected
2 Progression rate of exposed rodent to infected
�3 Human recovery rate
$ Progression rate of recovered human to susceptible
�1 Natural death rate for Human
�1 Disease induced death rate for Human
�3 Disease induced death rate for rodent
�3 Natural death rate for rodent
!1 Adequate contact rate: Pathogens to human
!2 Adequate contact rate: Pathogens to rodent
�4 Natural death rate for Pathogens
�2 Natural death rate for �ea
�2 Disease induced death rate for �ea
 1 Immigration rate of human
 2s Immigration rate of Susceptible �ea
 3 Immigration rate of rodent
� The probability at which �eas become infected

Using the description of the dynamics of bubonic plague and the assumptions, we construct the
compartmental diagram that capture the interaction between the human beings, rodents, �eas
and pathogens in the environment that dictate the dynamics of bubonic plague disease as given
in Fig 2.
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Figure 2: Compartmental model for bubonic plague

2.2.3 Model Equations for bubonic Plague

From the compartmental diagram in Fig 2 we derive the following equations;
Human beings

dSH
dt

=  1 +$RH � �1(�fh
IF
N2

+ !1A)SH � �1SH ; (1a)

dEH
dt

= �1(�fh
IF
N2

+ !1A)SH � �2EH � �1EH ; (1b)

dIH
dt

= �2EH � �3IH � (�1 + �1)IH ; (1c)

dRH

dt
= �3IH �$RH � �1RH : (1d)

Rodents
dSR
dt

=  3 � 1(�fr
IF
N2

+ !2A)SR � �3SR (2a)

dER
dt

= 1(�fr
IF
N2

+ !2A)SR � 2ER � �3ER (2b)

dIR
dt

= 2ER � (�3 + �3)IR (2c)

Flea
dSF
dt

=  2s � �(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � �2SF (3a)

dIF
dt

= �(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � (�2 + �2)IF (3b)
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Pathogens in the environment

dA
dt

= �4 � !1ASH � !2ASR � �4A (4)

2.3 Basic properties of the model

2.3.1 Positivity of the solution and Invariant regions

Solving the equations of the system in their patches for testing the positivity, we found that by
letting the initial values of the system (1,2,3 and 4) be: (SH(0), SR(0),SF (0), A(0)) > 0 and
(EH(0),IH(0),RH(0),ER(0); IR(0); IF (0))� 0 then the solution set SH(t), SR(t), SF (t), A(t),
EH(t), IH(t), RH(t), ER(t), IR(t) and IF (t) are non-negative 8 t� 0.

Since the system is modeling populations, we assume that all state variables and parameters of
the model are non-negative 8t � 0. The bubonic plague disease model has four compartments
which are analyzed separately. The model system is analyzed in suitable feasible region where
all state variables are positive. This region is obtained by considering the following theorem:

Theorem 2.1
All forward solutions in R10

+ of the system are feasible 8t � 0 if they enter the invariant region
� for � = 
H � 
R � 
F � 
A

where

H = (SH ; EH ; IH ; RH) 2 R4

+ : SH + EH + IH +RH � N1


R = (SR; ER; IR) 2 R3
+ : SR + ER + IR � N3


F = (SF ; IF ) 2 R2
+ : SF + IF � N2


A = A 2 R1
+

and � is the positive invariant region of the whole system.

Proof. For human population
We need to prove that the solutions of the system (1) are feasible 8t > 0 as they enter the
invariant region 
H .

We now let 
H = (SH ; EH ; IH ; RH) 2 R4 be the solution space of the system (1) with non-
negative initial conditions.

The total human population is

N1 = SH + EH + IH +RH
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Then
dN1

dt
=
dSH
dt

+
dEH
dt

+
dIH
dt

+
dRH

dt
(5)

Adding up the system (1a) - (1d) we get,

dN1

dt
=  1 � �1N1 � �1IH ) dN1

dt �  1 � �1N1

Now integrating this and applying the initial condition t = 0; N1(t = 0) = N10 we �nd that;

N1 �
 1

�1
+ (N10 �

 1

�1
)e��1t (6)

Figure 3a illustrates that, considering expression (6) when N10 >  1
�1

the population decreases
asymptotically to  1

�1
and when N10 <  1

�1
the population increases asymptotically to  1

�1
.

Now applying Birkhof and Rota’s theorem on differential inequality for equation (6), as t!1,
in the case when N10 >  1

�1
or when N10 <  1

�1
we obtain 0 � N1 �  1

�1
Hence all the feasible

solutions of the system enter the region


H =
�

(SH ; EH ; IH ; RH) : N1 �Max
�
N10;

 1

�1

��

For rodent population
We need to prove that the solutions of the system (2) are feasible 8t > 0 as they enter invariant
region 
R.
We now let 
R = (SR; ER; IR) 2 R3 be any solution of the system with non-negative initial
conditions.
Using the procedures stated in subsection (2:3:1) we �nd that

N3 �
 3

�3
+ (N30 �

 3

�3
)e��3t (7)

Figure 3b shows that, for expression (7), when N30 >  3
�3

the population decreases asymptot-
ically to  3

�3
and when N30 <  3

�3
the rodent population increases asymptotically to  3

�3
. Now

applying Birkhof and Rota’s theorem on differential inequality for equation (7), as t ! 1, in
the case when N30 >  3

�3
or when N30 <  3

�3
we obtain 0 � N3 �  3

�3
. Hence all the feasible

solutions of the system enter the region


R =
�

(SR; ER; IR) : N3 �Max
�
N30;

 3

�3

��

. For �ea population
We need to prove that the solutions of the system (3) are feasible 8t > 0 as they enter invariant
region 
F .
We now let 
F = (SF ; IF ) 2 R2 be any solution of the system with non-negative initial
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(a) (b)

Figure 3: Feasible region for Human and Rodent systems

conditions.
We also employ the procedures stated in subsection (2:3:1) and �nd that

N2 �
 2s

�2
+ (N20 �

 2s

�2
)e��2t (8)

Figure 4a shows that, for expression (8) when N20 >  2s
�2

the population decreases asymptoti-
cally to  2s

�2
and when N20 <  2s

�2
the �ea population increases asymptotically to  2s

�2
.

Now applying Birkhof and Rota’s theorem on differential inequality for equation (8), as t!1
in the case when N20 >  2s

�2
or when N20 <  2s

�2
we obtain 0 � N2 �  2s

�2
Hence all the feasible

solution of the system enter the region


F =
�

(SF ; IF ) : N2 �Max
�
N20;

 2s

�2

��
:

For pathogens in the environment
We need to prove that the solutions of the system (4) are feasible 8t > 0 as they enter invariant
region 
A.

We now let 
A = A 2 R1
+ be any solution of the system with non-negative initial conditions.

Now integrating this and applying the initial condition t = 0; A(t = 0) = A0 we �nd that;

A(t) �
�4

�4
+ (A0 �

�4

�4
)e��4t: (9)

Figure 4b shows that, for expression (9), when A0 > �4
�4

the pathogens decrease asymptotically
to �4

�4
and when N30 < �4

�4
pathogens increase asymptotically to �4

�4
. Now applying Birkhof and

Rota’s theorem on differential inequality for equation (9), as t!1 in the case when A0 > �4
�4

or when N30 < �4
�4

we obtain 0 � A � �4
�4

. Hence the feasible solution of the system enter the
region


A =
�
A : A �Max

�
A0;

�4

�4

��
:
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(a) (b)

Figure 4: Feasible region for Flea and Pathogens in the Environment systems

2.3.2 Positivity of the solution

For the bubonic plague disease model system (1) - (4) to be epidemiologically meaningful and
well posed, we need to prove that all state variables are non-negative 8t � 0. We now solve the
equations of the system in their patches for testing the positivity.

Theorem 2.2
Let the initial values of the system (1,2,3 and 4) be: (SH(0), SR(0), SF (0), A0) > 0 and
(EH(0), IH(0), RH(0), ER(0), IR(0), IF (0)) � 0. Then the solution set SH(t), SR(t), SF (t),
A(t), EH(t), IH(t), RH(t), ER(t), IR(t) and IF (t) are positive 8t � 0.

Proof. We use the equations of the system (1)-(4) in their subgroups for testing the positivity

For human population
Using the �rst equation in human system we have

SH � SH0e
�
R t
0 (�1(�fh

IF
N2

+!1A)+�1)d� > 0 since (�1(�fh
IF
N2

+ !1A) + �1) > 0

From the second equation we have

EH � EH0e�(�2+�1)t > 0 since (�2 + �1) > 0.

Third equation of system (1) we have

IH � IH0e�(�3+�1+�1)t > 0 since (�3IH + �1 + �1) > 0.

And the last equation in system (1) we have

22



RH � RH0e�($+�1)t > 0 since ($ + �1) > 0.

For rodent population
Using equation one from system (2) we have

SR � SR0e
�
R t
0 (1(�fr

IF
N2

+!2A)+�3)d� > 0 since (1(�fr
IF
N2

+ !2A) + �3) > 0.

From the second equation of the system (2) we have

ER � ER0e�(2+�3)t > 0 since (2 + �3) > 0.

And the from the third equation of system (2) we have

IR � IR0e�(�3+�3)t > 0 since (�3 + �3) > 0.

For �ea population
Now from the �rst equation of system (3) we have

SF � SF0e
�
R t
0 (�(��hf

IH
N1

+(1��)�rf
IR
N3

)+�2)d� > 0 since (�(��hf
IH
N1

+ (1� �)�rf
IR
N3

) + �2) > 0.

Taking the second equation we have

IF � IF0e�(�2+�2)t > 0 since (�2 + �2) > 0.

For pathogens in the environment
The sub-group has only one equation so using equation (4) we have

A � A0e�
R t
0 (!1SH+!2SR+�4)d� > 0 since (!1SH + !2SH + �4) > 0.

2.4 Model analysis

In this section, we assess existence of equilibrium states, reproduction number and stability of
the equilibrium states.
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2.4.1 Disease Free Equilibrium

The model has disease free equilibrium which is obtained by setting IH = EH = RH = 0,
IR = ER = 0,IF = 0 and A = 0 for human , Rodent, Flea and pathogen system respectively.
We then substitute the above into the new system obtained by setting the derivatives of (1) - (4)
equal to zero such that:
Human

 1 +$RH � �1(�fh
IF
N2

+ !1A)SH � �1SH = 0 (10a)

�1(�fh
IF
N2

+ !1A)SH � �2EH � �1EH = 0 (10b)

�2EH � �3IH � (�1 + �1)IH = 0 (10c)

�3IH �$RH � �1RH = 0 (10d)

Rodent

 3 � 1(�fr
IF
N2

+ !2A)SR � �3SR = 0 (11a)

1(�fr
IF
N2

+ !2A)SR � 2ER � �3ER = 0 (11b)

2ER � (�3 + �3)IR = 0 (11c)

Flea

 2s � �(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � �2SF = 0 (12a)

�(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � (�2 + �2)IF = 0 (12b)

Pathogens
�4 � !1ASH � !2ASR � �4A = 0 (13)

Then we have the disease free-equilibrium point given as E0
H =

�
 1
�1
; 0; 0; 0

�
, E0

R =
�
 3
�3
; 0; 0

�
,

E0
F =

�
 2s
�2
; 0
�

and E0
A = 0 for human, Rodent, Flea and pathogen respectively.

Then the disease free equilibrium of the entire system

E0(S0
H ; E

0
H ; I

0
H ; R

0
H ; S

0
R; E

0
R; I

0
R; S

0
F ; I

0
F ; A

0) =
�
 1

�1
; 0; 0; 0;

 3

�3
; 0; 0;

 2s

�2
; 0; 0

�
:

2.4.2 Basic Reproduction Number R0 for bubonic plague

Basic reproduction number is the expected number of secondary cases produced by a single
infectious individual during the entire infectious period of that particular individual in a com-
pletely susceptible population. The epidemiological criterion of R0 is that if R0 < 1, then
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the single infected individual in entirely susceptible population infects less than one individ-
ual. Hence the disease may be eradicated from the population and the disease-free equilibrium
point is asymptotically stable.That is the disease cannot invade the population. If R0 > 1 it
means that a single infected individual in entirely susceptible population infects more than one
individuals. Hence the disease may persist in the population, and the disease free equilibrium
point is unstable. In this case the disease can invade the population and persist for a long time If
R0 = 1 it means that a single infected individual in entirely susceptible population infects one
new individuals. Hence the disease will stay alive in the population without an epidemic (Allen
et al., 2008).

We use next generation method as described by Van den Driessche and Watmough (2002) to
�nd the basic reproductive number. Consider a heterogeneous population whose individuals
are distinguishable by stage of the disease, and hence identi�able and put into epidemiological
compartments SH ; EH ; IH ; RH ; SR; ER; IR; SF ; IF and A. By �rst re-arranging the system to
have the infection classes come �rst, we sort the compartments so that the �rstm compartments
correspond to infected individuals.

We now let Fi(x) be the rate of appearance of new infections in compartment i, V +
i (x) be the

rate of transfer of individuals into compartment i by all other means except the epidemic and
V �i (x) be the rate of transfer of individuals out of compartment i.

The disease transmission model consists of the system of equations x
0

i = Fi(x)� Vi(x)
where Vi(x) = V �i (x)� V +

i (x).
Since we already have the disease free equilibrium x0, we then compute matrices F and V
which are m�m matrices de�ned by:

F =
�
@Fi
@xj

(x0)
�
; V =

�
@Vi
@xj

(x0)
�

with 1 � i; j � m.

Since F is non-negative and V is a non-singular matrix then V �1 is non-negative and also FV �1

is non-negative. Matrix FV �1, is de�ned as the next generation matrix (Diekmann et al., 1990).
Therefore the basic reproductive number is de�ned as:

R0 = �(FV �1)

where �(FV �1) is the maximum modulus of the eigenvalues of the non-negative matrix FV �1.

We �rst re-arrange the system to have the infection classes come �rst:
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dEH
dt

= �1(�fh
IF
N2

+ !1A)SH � �2EH � �1EH ; (14a)

dIH
dt

= �2EH � �3IH � (�1 + �1)IH ; (14b)

dER
dt

= 1(�fr
IF
N2

+ !2A)SR � 2ER � �3ER (14c)

dIR
dt

= 2ER � (�3 + �3)IR (14d)

dIF
dt

= �(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � (�2 + �2)IF (14e)

dA
dt

= �4 � !1ASH � !2ASR � �4A (14f)

dSH
dt

=  1 +$RH � �1(�fh
IF
N2

+ !1A)SH � �1SH ; (14g)

dRH

dt
= �3IH �$RH � �1RH : (14h)

dSR
dt

=  3 � 1(�fr
IF
N2

+ !2A)SR � �3SR (14i)

dSF
dt

=  2s � �(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � �2SF (14j)

Now from the system (14) the infectious classes are (14a) to (14f) with compartment
EH ; IH ; ER; IR and A , this will now yield

Fi =

0

BBBBBBBBBB@

�1(�fh IFN2
+ !1A)SH
0

1(�fr IFN2
+ !2A)SR
 3

�(��hf IHN1
+ (1� �)�rf IRN3

)SF
0

1

CCCCCCCCCCA

(15)

And

Vi =

0

BBBBBBBBBB@

�2EH + �1EH
�3IH + (�1 + �1)IH � �2EH

�3ER + 2ER
(�3 + �3)IR � 2ER

(�2 + �2)IF
!1ASH + !2ASR + �4A� �4

1

CCCCCCCCCCA

: (16)

We compute Jacobian matrices of F and V at x0
For F we will have;
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@Fi
@xj

=

0

BBBBBBBBBB
@

@F1
@EH

@F1
@IH

@F1
@ER

@F1
@IR

@F1
@IF

@F1
@A

@F2
@EH

@F2
@IH

@F2
@ER

@F2
@IR

@F2
@IF

@F2
@A

@F3
@EH

@F3
@IH

@F3
@ER

@F3
@IR

@F3
@IF

@F3
@A

@F4
@EH

@F4
@IH

@F4
@ER

@F4
@IR

@F4
@IF

@F4
@A

@F5
@EH

@F5
@IH

@F5
@ER

@F5
@IR

@F5
@IF

@F5
@A

@F6
@EH

@F6
@IH

@F6
@ER

@F6
@IR

@F6
@IF

@F6
@A

1

CCCCCCCCCC
A

=

0

BBBBBB
@

0 0 0 0 �1�fhSH
N2

�1!1SH
0 0 0 0 0 0
0 0 0 0 1�frSR

N2
1!2SR

0 0 0 0 0 0
0 ���hfSF

N1
0 �(1��)�rfSF

N3
0 0

0 0 0 0 0 0

1

CCCCCC
A
:

Now at x0 we will have

F =

0

BBBBBBBBBB@

0 0 0 0 �1 1�2�fh
�1 2s

�1 1!1
�1

0 0 0 0 0 0
0 0 0 0 1 3�2�fr

�3 2s

1 3!2
�3

0 0 0 0 0 0
0 � 2s�1��hf

�2 1
0 � 2s�3(1��)�rf

�2 3
0 0

0 0 0 0 0 0

1

CCCCCCCCCCA

: (17)

and for V we will have;

V =
@Vi
@xj

(x0) =

0

BBBBBBBBBB@

@V1
@EH

@V1
@IH

@V1
@ER

@V1
@IR

@V1
@IF

@V1
@A

@V2
@EH

@V2
@IH

@V2
@ER

@V2
@IR

@V2
@IF

@V2
@A

@V3
@EH

@V3
@IH

@V3
@ER

@V3
@IR

@V3
@IF

@V3
@A

@V4
@EH

@V4
@IH

@V4
@ER

@V4
@IR

@V4
@IF

@V4
@A

@V5
@EH

@V5
@IH

@V5
@ER

@V5
@IR

@V5
@IF

@V5
@A

@V6
@EH

@V6
@IH

@V6
@ER

@V6
@IR

@V6
@IF

@V6
@A

1

CCCCCCCCCCA

V =

0

BBBBBBBBBB@

�2 + �1 0 0 0 0 0
��2 �3 + �1 + �1 0 0 0 0

0 0 �3 + 2 0 0 0
0 0 �2 �3 + �3 0 0
0 0 0 0 �2 + �2 0
0 0 0 0 0 !1SH + !2SR + �4

1

CCCCCCCCCCA

: (18)

For simplicity we now let;
z1 = �2 + �1

z2 = �3 + �1 + �1

z3 = �3 + 2

z4 = �3 + �3

z5 = �2 + �2

z6 = !1 1
�1

+ !2 3
�3

+ �4:
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And thus matrix V become

V =

0

BBBBBBBBBB@

z1 0 0 0 0 0
��2 z2 0 0 0 0

0 0 z3 0 0 0
0 0 �2 z4 0 0
0 0 0 0 z5 0
0 0 0 0 0 z6

1

CCCCCCCCCCA

We now compute V �1 and FV �1 using maple we will have;

V�1 =

0

BBBBBBBBBB@

1
z1

0 0 0 0 0
�2
z2z1

1
z2

0 0 0 0
0 0 1

z3
0 0 0

0 0 2
z4z3

1
z4

0 0
0 0 0 0 1

z5
0

0 0 0 0 0 1
z6

1

CCCCCCCCCCA

(19)

We again have;

FV�1 =

0

BBBBBBBBBB@

0 0 0 0 �1 1�2�fh
�1 2sz5

�1 1!1
�1z6

0 0 0 0 0 0
0 0 0 0 1 3�2�fr

�3 2sz5
1 3!2
�3z6

0 0 0 0 0 0
� 2s�1��hf�2
�2 1z2z1

� 2s�1��hf
�2 1z2

� 2s�3(1��)�rf2
�2 3z4z3

� 2s�3(1��)�rf
�2 3z4

0 0
0 0 0 0 0 0

1

CCCCCCCCCCA

(20)
From (20) the basic reproduction number R0 is computed by �nding the spectral radius
�(FV �1) of the next generation matrix in which the dominant eigenvalue of matrix (20) will be
the required R0 . Now using maple software we get the following eigenvalues:
�1 = �2 = �3 = �4 = 0 and

�5 =
p
z4z3 2sz5z2z1�(z1z2 2s(1� �)�rf21�fr + ��hf�2�1�fhz4z3 2s)

z4z3 2sz5z2z1

�6 = �
p
z4z3 2sz5z2z1�(z1z2 2s(1� �)�rf21�fr + ��hf�2�1�fhz4z3 2s)

z4z3 2sz5z2z1

From the above eigenvalues we take the basic reproduction number as:

R0 =
p
z4z3 2sz5z2z1�(z1z2 2s(1� �)�rf21�fr + ��hf�2�1�fhz4z3 2s)

z4z3 2sz5z2z1
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Simplifying and substituting the expressions for z1; z2; z3; z4 and z5 we will get:

R0 =

s
�

(�2 + �2)

�
21�rf�fr(1� �)
(�3 + 2)(�3 + �3)

+
��2�1�hf�fh

(�2 + �1)(�3 + �1 + �1)

�

This dimensionless quantity measures the average number of secondary infection produced
when a typical infectious individual enters an entirely susceptible population. Since our model
has multiple transmission routes which are from �ea to rodent, �ea to human, pathogens in
the environment to rodent and human, rodent to �ea and human to �ea transmissions, then
the basic reproductive number obtained via next-generation method does not give the number
of host infected by a single individual (as there are more than one agents for transmission),
rather it gives the geometric mean of the number of infections per generation (Li and Blakeley,
2011). It depends on the probability at which �eas gets infected �, �ea’s infectious period

1
�2+�2

, probability that rodent survive the infected class 2
�3+2

, rodent’s infectious period 1
�3+�3

,
the proportion that �ea gets the disease from the rodent or human which are (1� �)�rf or ��hf
respectively, human’s infectious period 1

�1+�1+�3
, probability that human survive the infectious

class �2
�1+�2

, the adequate contact rate �ea to human �fh, the adequate contact rate �ea to rodent
�fr and the probability at which human and rodent become exposed to the the disease which
are �1 and 1 respectively.

2.5 Sensitivity analysis, Simulation and Discussion

Sensitivity analysis is used to determine the strength of the dependence of model predictions
on parameter values. In this section, we use sensitivity analysis to determine the impact of
the parameters on R0. In order to determine an effective way that can reduce mortality and
morbidity due to bubonic plague disease in human beings and rodents (domestic animals). It is
important to deeply understand the comparative importance of factors that are responsible for
the transmission and prevalence of the disease (Cohen and Murray, 2004).

2.5.1 Numerical Simulation

Parameter values

Table 3 shows the values of the parameters of bubonic plague disease model. The parameters
are taken from previous studies that relate to this study, existing information from literature and
through estimation using sensitivity analysis and simulations.
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Table 3: Parameter values for Bubonic plague disease model

Parameter Value Reference/Source

�rf 0.6 Estimated
�fh 0.09 Benkirane et al. (2009)
�fr 4.7 Li (1993)
�1 0.9 Estimated
1 0.9 Estimated
�hf 0.28 Benkirane et al. (2009)
�4 0.89 Estimated
�2 0.04 Keeling and Gilligan (2000a)
2 0.05 Keeling and Gilligan (2000a)
�3 0.1 Keeling and Gilligan (2000a)
$ 0.1 Keeling and Gilligan (2000a)
�1 0.04 Keeling and Gilligan (2000a)
�1 0.04 Keeling and Gilligan (2000a)
�3 0.05 Keeling and Gilligan (2000b)
�3 0.2 Galtier and Mouchiroud (1998)
!1 0.01 Keeling and Gilligan (2000a)
!2 0.073 Benkirane et al. (2009)
�4 0.1 Estimated
�2 0.07 Benkirane et al. (2009)
�2 0.03 Benkirane et al. (2009)
 1 0.09 Estimated
 2S 0.008 Keeling and Gilligan (2000b)
 3 0.03 Keeling and Gilligan (2000a)
� 0.99 Estimated

Figure 5, Fig. 6, Fig. 7 and Fig. 8 show the dynamics of the compartments in human being,
rodent, �ea and Pathogens populations respectively. In human population, it can be seen that
there is an increase in susceptible and infected human beings for a short period of time, then it
decreases to the endemic equilibrium point. However due to natural recovery, the population of
susceptible human beings is higher than the infectious human beings. The exposed human be-
ings and recovered human beings experience the exponential decay to the endemic equilibrium
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point due to due to progression from EH to IH and from RH to SH respectively

In rodent population, we note that there is a fast increase of infected rodent, it then undergoes
exponential decay together with susceptible and Exposed rodent to the endemic point. In �ea
population there is increase of infected �ea for the short time before it decays together with
susceptible �ea class to the endemic point. The Pathogens in the environment experience a
rapid decay to the endemic point.

The features displayed by all groups are realistic and biologically relevant as there is no any
intervention to combat the disease, the little recovery rate that is seen in human group is to
those who are lucky enough to get treatment. Thus it is fact that the compartment in all groups
will eventually decrease to the endemic points.
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Figure 5: The dynamics of Susceptible, Exposed, Infected and Recovered human from sub-model (1)

with baseline parameter values given in Table 3. These parameters correspond to R0 = 3:2.

2.5.2 Sensitivity analysis of R0 for bubonic plague disease

The sensitivity analysis of R0 for plague disease helps to determine the impact of various pa-
rameters on R0 and thus the parameters’ effect on the prevalence and transmission of bubonic
plague disease (Chitnis et al., 2008). In this section, we analyze the bubonic plague model by
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Figure 6: The dynamics of Susceptible, Exposed and Infected rodent from sub-model (2) with baseline

parameter values given in Table 3. These parameters correspond to R0 = 3:2.
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Figure 7: The dynamics of Susceptible and Infected �ea from sub-model (3) with baseline parameter

values given in Table 3. These parameters correspond to R0 = 3:2.
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Figure 8: The dynamics of pathogens from sub-model (4) with baseline parameter values given in

Table 3. These parameters correspond to R0 = 3:2.

evaluating the sensitivity indices of the basic reproductive number, R0, to model parameters us-
ing the baseline values given in Table 3. The basic reproduction number R0 of bubonic plague
depends on seventeen parameters, applying the method used by Chitnis et al. (2008) we de-
rive an analytical expression for its sensitivity to each parameter using the normalized forward
sensitivity indices of R0 with respect to parameters ni involved in R0 as given below:

�R0
ni =

@R0

@ni
�
ni
R0

For example, the sensitivity indices of R0 with respect to � and �2 are given respectively by:

�R0
� =

@R0

@�
�

�
R0

=
1
2

and �R0
�2 =

@R0

@�2
�
�2

R0
=

��
2(�2 + �2)

Now using the same procedure we can �nd the indices for �R0
�fh , �R0

�hf , �R0
�fr , �R0

�rf , �R0
�1

, �R0
�2

,
�R0
�3

, �R0
�1 , �R0

�3 , �R0
1

, �R0
2

, �R0
�1

, �R0
�2

and �R0
�3

as tabulated in Table 4;

From Table 4 we observe that the most in�uential parameter is the probability that susceptible
�ea become infected (�), the indices of adequate contact rate from infectious �ea to suscepti-
ble human being (�fh), adequate contact rate infectious human being to susceptible �ea (�hf ),
probability that human progress from susceptible to exposed (�1), adequate contact rate in-
fectious �ea to susceptible rodent (�fr), adequate contact rate infectious rodent to susceptible
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Table 4: Sensitivity indices evaluated at baseline parameter values for plague disease.

Parameter Sensitivity Index Parameter Sensitivity Index

�rf +0.4986 �3 -0.0100
�fh +0.0014 �3 -0.3144
�fr +0.4986 �2 -0.8846
�1 +0.0014 �2 -0.1154
1 +0.4986 �2 +0.0006
�hf +0.0014 2 +0.4155
�3 -0.0005 �1 -0.0004
�1 -0.0011 � +0.5
� +0.1232

�ea (�rf ), progression rate of exposed human being to infected human being (�2), probability
that rodent progress from susceptible to exposed (1) and progression rate of exposed rodent
to infected rodent (2) are positive. The positive sign of the indices of the mentioned param-
eters imply that increasing (decreasing) one of these parameters while keeping others constant
increases (decreases) the value of the basic reproduction number. For example the sensitivity
indices of R0 with respect to � given by

�R0
� =

@R0

@�
�

�
R0

=
1
2

implies that the increase of the probability that �ea become infectious by 10%, increases the
value of basic reproduction number by 5% and hence increases the chance of persistence of the
disease; the vice versa is also true. Additionally, the indices of human recovery rate (�3), disease
induced death rate for human being (�1), disease induced death rate for �ea (�2), disease induced
death rate for rodent (�3), natural death rate for human being (�1), natural death rate for �ea (�2)
and natural death rate for rodent (�3) are negative. This implies that increasing (decreasing) one
of these parameters while keeping the other constant decreases (increases) the value of basic
reproduction number R0 and hence decreases (increases) the chance of persistence of bubonic
plague.

Figure 9 illustrates the effect of the most in�uential positive index (the probability that �ea
become infected (�)) and the most in�uential negative index (�ea’s natural death rate (�2)) on
the basic reproduction number. In Fig. 9a we note that the increase of the probability at which
�eas become infectious result in the rapid increase of the basic reproduction number. Figure 9b
shows a quite signi�cant exponential decrease of the basic reproduction number as we increase
�ea’s natural death rate (�2). The behavior that is seen in Fig. 9b echoes that depict in Fig. 9a
and shows that since �eas are the major player in the transmission and spread of plague disease.
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(a) (b)

Figure 9: The effect of progression rate of exposed �ea to infected and �ea’s natural death rate on the

basic reproduction number

Hence the increase of �ea’s death rate will reduce the �ea’s population and thus automatically
reduce the transmission rate of the bacteria causing bubonic plague disease in human beings,
rodents and to the environment.

McNeill (2010) postulates that as the number of infected �ea increases the disease transmission
into the rodent and human populations increase as well, this is due to the signi�cant role played
by infected �ea in the transmission of bubonic plague disease as demonstrated in Fig. 10. The
parameters that increases the basic reproduction number proportionally increase the endemicity
of the disease (Hartemink et al., 2008).

In the basic reproduction number, the contribution of the pathogens in the environment is neg-
ligible, this is caused by the nature of bubonic plague (when the Yersinia pestis affect the lym-
phatic system) the transmission from the environment to human being and rodent population
is very rare due to the effect of weather conditions (temperature, precipitation and humidity).
For instance the studies by Shrewsbury (2005) and Armon and Cheruti (2012) postulate that
Yersinia pestis survives at the temperature between 4�C to 8 �C. Under normal circumstances,
taking Tanzania as an example, it is not common to �nd an area with such temperature. The
absence of weather conditions that favors survival and growth of pathogens, leads to enormous
loss of pathogens from the environment which as a result leads to its poor contribution to the
transmission and spread of Bubonic Plague. However, if we assume the availability of the fa-
vorable condition for pathogen’s growth and survival. The result will be the enormous increase
in the population of pathogens in the environment. This will as a result increases the possibility
of the disease transmission from the pathogens in the environment to the human beings and
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Figure 10: Variation of Infected Human and Rodent with Infected Flea population

rodents.

Figure 11a and Fig. 11b illustrate the effect of increasing number of pathogens in the environ-
ment on the infected human and rodent population respectively. The �gures depict an increase in
the number of infected human beings and rodents with the increase in the number of pathogens
in the environment to their maximum which is the point where all human and rodent become
infectious. The populations then decline due to natural and disease induced death.

Transmission of the disease occurs after adequate contact between the infected �ea with either
the human being or the rodent and the vise versa. As seen in Table 4 adequate contact rates
is very signi�cant in the transmission and spread of bubonic plague disease. Figure 12a, Fig.
12b, Fig. 13a and Fig. 13b respectively show the effect of contact rate between human to �ea,
rodent to �ea, and �ea to human and rodent. We note that in all cases the increase of contact
rate between the infected and the susceptible results in the number infected.

Therefore any mechanism/strategy of controlling bubonic plague disease must put into con-
sideration the parameters that have shown a great in�uence in the transmission and spread of
bubonic plague disease. Most of the parameters may be reduced by reducing the number of
infected �eas and rodent population and disinfecting the contaminated environment by using
various ways that will kill the pathogens. The analysis shows that the best control measure of
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(a) (b)

Figure 11: Variation of Infected Human and Rodent with the increase in the number of Pathogens in

the Environment

(a) Human to Flea (b) Rodent to Flea

Figure 12: The effect of contact rate on the infected �ea population

(a) Flea to Human (b) Flea to Rodent

Figure 13: The effect of contact rate on the infected Human and Rodent population
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the bubonic plague disease outbreak will be the one that will reduce the probability at which
�ea become infected(�). This will as a result reduce the number of infected �eas which are
the major players in the transmission and spread of bubonic plague disease in human and ro-
dent population. Although susceptible human beings and rodents may get the disease through
the adequate interaction with the infected environment, to large extent infected �ea carries the
signi�cant contribution in the transmission and spread of bubonic plague disease.

Also, there are parameters whose increase reduces the initial diseases transmission. These are
natural and disease induced death rate for human, �ea and rodent and human recovery rate. The
increase of disease induced death rates in human, rodent and �ea will reduce the population
of infectious classes as a result hinders the occurrence of new infection and thus reduce initial
bubonic plague transmission. The natural death rates for human, rodent and �ea reduces the
general population but most importantly it reduces the infectious and exposed classes which in
turn reduce the transmission force of the disease. The human recovery rate reduces the number
of infected human population and as a result it reduces the transmission force of the disease.

To effectively guide public policy and public health decision making, the mentioned factors that
affect the parameter values must be highly considered. Using the values of the parameters used
in this study the value of R0 exceeds one, this tells us that the disease will persist within the
community and thus various control measures should be taken to control and/or eliminate the
disease.

2.6 Discussion and Conclusion

The SEIR model with modi�cation was developed and analyzed to study the dynamics of
bubonic plague disease, the model includes four populations which are human beings, rodents
who are also the primary reservoir of Yesinia pestis, �ea and pathogens within the environment.
The analytical results show that bubonic plague transmission to both human and rodent popu-
lation depends largely on the infected �ea population. Moreover infected rodents and human
beings are the major transmission agents of bubonic plague to �ea population.

The basic reproduction number R0 is computed and discussed. Using the sensitivity analysis,
we obtain the parameter which are most, medium and least sensitive to the initial transmission
of bubonic plague. The rate at which the infected �ea are recruited and the adequate contact
rates between susceptible and infected individuals have shown to have a signi�cant positive
contribution in the transmission and spread of bubonic plague disease as seen in Fig 9a and
Fig 13. Other parameters like Fleas, Rodent and Human natural and disease induced death rate
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contribute negatively on the bubonic plague transmission as in Fig 9b. These parameters are
vital in determining where and how to implement the control strategies for the eradication of
the disease.

The numerical solutions show that without the intervention, the populations ultimately go/ap-
proach to endemic points. This study recommends that for the sustainable control of bubonic
plague any intervention strategy should put into consideration the parameter that have shown
to be very in�uential (negatively and positively) to the basic reproduction number in order to
reduce the endemicity of the disease or if possible eradicate the disease whenever an outbreak
occur.
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CHAPTER THREE

Stability Analysis of Bubonic Plague Model with the Causing Pathogen Yersinia pestis in
the Environment 2

Abstract: Bubonic plague is a serious bacterial disease, mainly transmitted to human beings
and rodents through �ea bite. However the disease may also be transmitted upon the interaction
with the infected materials or surfaces in the environment. In this study, a deterministic model
for bubonic plague disease with yersinia pestis in the environment is developed and analyzed.
Conditions for existence and stability of the equilibrium points are established. Using the Jaco-
bian method, disease free equilibrium (DFE) point, E0 was proved to be locally asymptotically
stable. The Metzler matrix method was used to prove that the DFE is globally asymptotically
stable when R0 < 1. By applying Lyapunov stability theory and LaSalle’s invariant principle,
we prove that the endemic equilibrium point of system is globally asymptotically stable when
R0 > 1. Numerical simulations are done to verify the analytical predictions. The results show
that bubonic plague can effectively be controlled or even be eradicated if efforts are made to
ensure that there is effective and timely control strategies.

Keywords: Disease free equilibrium; Endemic Equilibrium; Stability analysis; Bubonic
Plague; Pathogens in the environment.

3.1 Introduction

Bubonic plague is a bacterial infection caused by Yersinia pestis when the bacteria infects lym-
phatic system (Gonzalez and Miller, 2016). It is characterised by geographical foci and extraor-
dinarily adaptation capability which gives it ability to re-emerge even after decades of silence.
Thus even though the disease is historic, it still infects and kills thousands of people around the
world (Guinet et al., 2015).

The disease mainly affects wild rodents, it can also be transmitted to human and other domestic
animals through �ea bites. Bubonic plague causes fever and very throbbing swelling of the
lymph glands also called buboes, which is the reason why the disease is called bubonic plague.

When the �ea is infested with pathogens causing bubonic plague, the bacteria multiply in the
proventriculus (foregut) of the �ea (Eisen et al., 2015). The bacteria has the tendency of block-

2This chapter is based on the research paper: Ngeleja, R. C., Luboobi, L., & Nkansah-Gyekye, Y. (2016). Sta-
bility Analysis of Bubonic Plague Model with the Causing Pathogen Yersinia pestis in the Environment. Advances
in Infectious Diseases, 6(03), 120.
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ing the �ea’s bloodsucking apparatus which consequently lead to the inability of �ea to pump
blood into the midgut for digestion. This makes the �ea to become ravenous and as a result it
bites the host repetitively while vomiting the bacteria causing disease into the host. When a host
dies, �eas moves off the body to seek another live warm-blooded host (Ayyadurai et al., 2008).

Although it is not yet clearly known how, Yersinia pestis may survive in the soil and remain
viable and fully virulent for 40 weeks in the environment and can cause the infection upon
the adequate interaction with the susceptible individual. This is believed to be the reason for
possible mechanism of interepizootic persistence, epizootic spread, and as a factor de�ning
plague foci (Eisen et al., 2008).

In this chapter, we discuss the stability analysis of the bubonic plague epidemic model in hu-
man, rodent and �ea population. The model includes the transmission from the environment to
the susceptible human or rodent. We also discuss the disease-free equilibrium point, endemic
equilibrium point of the model and analyze the local and global stability of these steady states.
We �nally use numerical simulations to support our analytical results.

3.2 Model Formulation

This chapter presents the stability analysis of the bubonic plague epidemic model developed
by Ngeleja et al. (2016). The model includes four interacting populations which are: human
population, Flea population, Rodent population and pathogens in the environment is developed.
We use SH , EH , IH andRH to represent Susceptible human beings, Exposed human beings, In-
fected human beings and Recovered human beings respectively; SR, ER and IR for Susceptible
rodents, Exposed rodents and Infected rodents respectively. The Susceptible and the Infectious
�ea are denoted by SF and IF respectively. The pathogens in the environment are denoted by
A. The total population for human being, rodent and �ea population are given by

N1 = SH + EH + IH +RH (1a)

N2 = SF + IF (1b)

N3 = SR + ER + IR (1c)

The parameters used in the model are described in Table 5
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Table 5: Parameters and their description for bubonic plague

Parameter Description .

�rf Adequate contact rate: infected rodent to �ea
�fh Adequate contact rate: infected �ea to human
�fr Adequate contact rate: infected �ea to rodent
�1 The probability that human progress from susceptible to exposed
1 Probability that rodent progress from susceptible to exposed
�hf Adequate contact rate: infected human to �ea
�4 Recruitment rate of pathogens
�2 Progression rate of exposed human to infected
2 Progression rate of exposed rodent to infected
�3 Human recovery rate
$ Progression rate of recovered human to susceptible
�1 Natural death rate for Human
�1 Disease induced death rate for Human
�3 Disease induced death rate for rodent
�3 Natural death rate for rodent
!1 Adequate contact rate: Pathogens to human
!2 Adequate contact rate: Pathogens to rodent
�4 Natural death rate for Pathogens
�2 Natural death rate for �ea
�2 Disease induced death rate for �ea
 1 Immigration rate of human
 2s Immigration rate of Susceptible �ea
 3 Immigration rate of rodent
� The probability at which �eas become infected

3.2.1 Model Equations for bubonic Plague

Since we allow the population in and out of the compartments(i.e., the population is not �xed),
the rate at which new infections occur in a population will depend on the fraction of the popula-
tion that is infected (disease prevalence) (i.e., frequency-dependent formulation). The infection
rate in human beings depends on the probability that a contact between infectious �ea and sus-
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ceptible human and between infectious environment and susceptible human leads to infection.
For the rodent, infection depends on the probability that a contact between infectious �ea and
susceptible rodent and between infectious environment and susceptible rodent leads to infection.
For the �ea, infection depends on the probability that a contact between infectious human and
susceptible �ea and between infectious rodent and susceptible �ea leads to infection. Therefore
the infection rates of susceptible humans, rodent population and �ea population are as given in
(2a), (2b) and (2c) respectively.

�fh
IF
N2

+ !1A (2a)

�fr
IF
N2

+ !2A (2b)

��hf
IH
N1

+ (1� �)�rf
Ir
N3

(2c)

Pathogens in the environment are recruited at a constant rate �4 and they are removed through
natural death �4 or removed when they come into contact with susceptible human and rodent at
the rates !1 and !2 respectively.

Using the de�nition of variables and parameters stated in Table 5, we derive the model for the
dynamics of bubonic plague disease in human, rodent, �ea and pathogens in the environment
as given in (3), (4), (5) and (6) respectively.
Human

dSH
dt

=  1 +$RH � �1(�fh
IF
N2

+ !1A)SH � �1SH ; (3a)

dEH
dt

= �1(�fh
IF
N2

+ !1A)SH � �2EH � �1EH ; (3b)

dIH
dt

= �2EH � �3IH � (�1 + �1)IH ; (3c)

dRH

dt
= �3IH �$RH � �1RH : (3d)

Rodent
dSR
dt

=  3 � 1(�fr
IF
N2

+ !2A)SR � �3SR (4a)

dER
dt

= 1(�fr
IF
N2

+ !2A)SR � 2ER � �3ER (4b)

dIR
dt

= 2ER � (�3 + �3)IR (4c)

Flea
dSF
dt

=  2s � �(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � �2SF (5a)

dIF
dt

= �(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � (�2 + �2)IF (5b)
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Pathogens
dA
dt

= �4 � !1ASH � !2ASR � �4A (6)

3.3 Steady State and Local Stability of the Critical Points

In this section, we assess the existence of equilibrium states and stability of the equilibrium
states of the system (3) - (6).

3.3.1 Disease Free Equilibrium

The model has a disease free equilibrium which is obtained by setting IH = EH = RH = 0,
IR = ER = 0, IF = 0 and A = 0 and the derivatives equal to zero into the system (3) - (6).

Then we have the disease free-equilibrium point given as E0
H =

�
 1

�1
; 0; 0; 0

�
, E0

R =
�
 3

�3
; 0; 0

�
, E0

F =
�
 2s

�2
; 0
�

and E0
A = 0 for Human, Rodent, Flea and Pathogen respec-

tively.
Then the disease free equilibrium of the entire system is

E0(S0
H ; E

0
H ; I

0
H ; R

0
H ; S

0
R; E

0
R; I

0
R; S

0
F ; I

0
F ; A

0) =
�
 1

�1
; 0; 0; 0;

 3

�3
; 0; 0;

 2s

�2
; 0; 0

�

3.3.2 Local Stability of the Disease-free Equilibrium Point

In this section, we examine the local stability analysis of the disease free equilibrium point
of the bubonic plague disease system (3) - (6). We analyze the local stability of the disease
free equilibrium point using the Jacobian method in which all equations in system (3) - (6) are
considered and analyzed at the disease free equilibrium E0. In this method, we compute and
examine the eigenvalues of Jacobian matrix of the system (3) - (6) to prove that the DFE is
locally and asymptotically stable. We are required to show that all real parts of the eigenvalues
at E0 are negative. Now, in order to attest that the eigenvalues are negative, we need to prove
the general condition that the determinant and the trace of the Jacobian matrix are positive and
negative respectively (Martcheva, 2015).

Now the Jacobian matrix of the system (3) - (6) at E0 is given by:
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J(E0) =

0

BBBBBBBBBBBB@

��1 0 0 $ 0 0 0 0 �k3
��1 1!1

�1

0 �k7 0 0 0 0 0 0 k3
�1 1!1
�1

0 �2 �k6 0 0 0 0 0 0 0
0 0 �3 �k9 0 0 0 0 0 0
0 0 0 0 ��3 0 0 0 �k4

�1 3!2
�3

0 0 0 0 0 �k10 0 0 k4
1 3!2
�3

0 0 0 0 0 2 �k11 0 0 0
0 0 �k1 0 0 0 �k2 ��2 0 0
0 0 k1 0 0 0 k2 0 �k8 0
0 0 0 0 0 0 0 0 0 �k5

1

CCCCCCCCCCCCA

(7)

where
k1 = ���hf 2s�1

 1�2
k2 = �(1��)�rf 2s�3

 3�2
k3 = �1 1�2�fh

�1 2s

k4 = 1 3�2�fr
�3 2s

k5 = !1 + !2 + �4 k6 = �3 + �1 + �1

k7 = �2 + �1 k8 = �2 + �2 k9 = $ + �1

k10 = 2 + �3 k11 = �3 + �3

We now use trace and determinant method to check the stability of the disease free equilibrium
point E0 in which we need to prove that the trace and the determinant of matrix (7) are negative
and positive respectively.
Then using mathematica software we prove that trace of the matrix (7) is given by

Trace = ��1� (�2 +�1)� k6� ($+�1)��3� (2 +�3)� (�3 + �3)��2� (�2 + �2)� k5

where

k5 = !1 + !2 + �4 k6 = �3 + �1 + �1

It is clear that the trace of the matrix (7) in negative. Then using the same software (mathemat-
ica) we are able to prove that the determinant of the matrix (7) is positive provided:

s
�

(�2 + �2)

�
21�rf�fr(1� �)
(�3 + 2)(�3 + �3)

+
��2�1�hf�fh

(�2 + �1)(�3 + �1 + �1)

�
< 1

where s
�

(�2 + �2)

�
21�rf�fr(1� �)
(�3 + 2)(�3 + �3)

+
��2�1�hf�fh

(�2 + �1)(�3 + �1 + �1)

�
(8)

is the basic reproduction number, R0.

R0 measures the average number of secondary infection produced by a typical infectious indi-
vidual in an entirely susceptible population. In our case, due to the presence of multiple trans-
mission cycles the basic reproductive number does not give the number of cases infected by a
single individual rather it gives the geometric mean of the number of infections per generation
(Li and Blakeley, 2011).

Referring to (8), the geometric mean of the number of infections per generation depends on:
rodent’s infective period 1

�3+�3
, the probability that �ea gets the disease from the rodent or
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human which are (1 � �)�rf or ��hf respectively. The human infectious period 1
�1+�1+�3

,
probability that human survive the infected class �2

�1+�2
, the probability at which �eas gets

infected �, �ea’s infective period 1
�2+�2

, probability that rodent survive the infected class 2
�3+2

,
the adequate contact rate �ea to human �fh, the adequate contact rate �ea to rodent �fr and
the probability at which human and rodent become exposed to the disease which are �1 and 1

respectively.

Thus disease free equilibrium point E0 is therefore locally asymptotically stable and leads to
the following theorem:

Theorem 3.3
The Disease Free Equilibrium E0 of bubonic plague is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

3.3.3 Global Stability of the Disease-free Equilibrium Point

In this section, we analyze the global stability of the disease free equilibrium point using Met-
zler matrix method as stated by Castillo-Chavez et al. (2002). To do this, we �rst sub-divide
the general system (3) - (6) of bubonic plague disease into transmitting and non-transmitting
components.

Now let Yn be the vector for non-transmitting compartment, Yi be the vector for transmitting
compartment and YE0 ;n be the vector of disease free point. Then

8
>>>><

>>>>:

dYn

dt
= A1(Yn �YE0 ;n) + A2Yi

dYi

dt
= A3Yi

(9)

We then have

Yn = (SH ; RH ; SR; SF )T Yi = (EH ; IH ; ER; IR; IF ; A) YE0 ;n = ( 1
�1
; 0;  3

�3
;  2s
�2

)

Yn �YE0 ;n =

0

BBBB@

SH �  1
�1

RH

SR �  3
�3

SF �  2s
�2

1

CCCCA

Now to prove the global stability of the DFE we need to show that Matrix A1 has real negative
eigenvalues and A3 is a Metzler matrix in which all off diagonal element must be non-negative.
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Referring to (9), we write the general model as below

0

BBBB@

 1 +$RH � �1kSH � �1SH ;
�3IH �$RH � �1RH :
 3 � 1MSR � �3SR
 2s � �Y SF � �2SF

1

CCCCA
= A1

0

BBBB@

SH �  1
�1

RH

SR �  3
�3

SF �  2s
�2

1

CCCCA
+ A2

0

BBBBBBBBBB@

EH
IH
ER
IR
IF
A

1

CCCCCCCCCCA

and 0

BBBBBBBBBB@

�1kSH � �2EH � �1EH ;
�2EH � �3IH � (�1 + �1) IH ;
1MSR � 2ER � �3ER
2ER � (�3 + �3)IR
�Y SF � (�2 + �2)IF

�4 � !1ASH � !2ASR � �4A

1

CCCCCCCCCCA

= A3

0

BBBBBBBBBB@

EH
IH
ER
IR
IF
A

1

CCCCCCCCCCA

For

k = (�fh IFN2
+ !1A) M = (�fr IFN2

+ !2A) Y = (��hf IHN1
+ (1� �)�rf IRN3

)

Now using the transmitting and non-transmitting element on the general system we will have
the matrices below:

A1 =

0

BBBB@

��1 $ 0 0
0 �($ + �1) 0 0
0 0 ��3 0
0 0 0 ��2

1

CCCCA
(10)

A2 =

0

BBBB@

0 0 0 0 ��1 1�2�fh
�1 2s

��1 1!1
�1

0 �3 0 0 0 0
0 0 0 0 �1 3�2�fr

�3 2s

�1 3!2
�3

0 �� 2s�1��hf
�2 1

0 �� 2s�3(1��)�rf
�2 3

0 0

1

CCCCA
(11)

A3 =

0

BBBBBBBBBB@

�(�2 + �1) 0 0 0 �1 1�2�fh
�1 2s

�1 1!1
�1

�2 ��1 0 0 0 0
0 0 �(2 + �3) 0 1 3�2�fr

�3 2s

1 3!2
�3

0 0 2 �(�3 + �3) 0 0
0 �3 0 �(1��)�rf 2s�3

 3�2
�(�2 + �2) 0

0 0 0 0 0 ��2

1

CCCCCCCCCCA

(12)
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where �1 = (�3 + �1 + �1), �2 = (!1SH + !2SR + �4) and �3 = ���hf 2s�1
 1�2

Now when we consider matrix A1, the computation shows that the eigenvalues are real and
negative, which now con�rms that the system

dYn

dt
= A1(Yn �YE0 ;n) + A2Yi

is globally and asymptotically stable at YE0 . And for matrix A3 we �nd that all its off-diagonal
elements are non-negative and thus A3 is a Metzler stable matrix.Therefore Disease Free Equi-
librium point for the general bubonic plague system is globally asymptotically stable and as a
result we have the following theorem:

Theorem 3.4
The disease-free equilibrium point is globally asymptotically stable inE0 ifR0 < 1 and unstable
if R0 > 1.

3.3.4 Existence of Endemic Equilibrium

Here, we consider the situation in which the disease persists in a population. We investigate
conditions for existence of the endemic equilibrium point of the system (3)-(6). The endemic
equilibrium point E�(S�H ; E�H ; I�H ; R�H ; S�R; E�R; I�R; S�F ; I�F ; A�) is obtained by solving the equa-
tions obtained by setting the derivatives of (3)-(6) equal to zero as in (13)-(16) which exist for
RO > 1.
Human

 1 +$RH � �1(�fh
IF
N2

+ !1A)SH � �1SH = 0 (13a)

�1(�fh
IF
N2

+ !1A)SH � �2EH � �1EH = 0 (13b)

�2EH � �3IH � (�1 + �1)IH = 0 (13c)

�3IH �$RH � �1RH = 0 (13d)

Rodent

 3 � 1(�fr
IF
N2

+ !2A)SR � �3SR = 0 (14a)

1(�fr
IF
N2

+ !2A)SR � 2ER � �3ER = 0 (14b)

2ER � (�3 + �3)IR = 0 (14c)

Flea

 2s � �(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � �2SF = 0 (15a)

�(��hf
IH
N1

+ (1� �)�rf
IR
N3

)SF � (�2 + �2)IF = 0 (15b)
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Pathogens
�4 � !1ASH � !2ASR � �4A = 0 (16)

Since it is dif�cult to obtain explicitly the endemic equilibrium points of the model, we will
prove its existence using the approach described in the studies by Tumwiine et al. (2007) and
Massawe et al. (2015). For the endemic equilibrium to exist it must satisfy the condition EH 6=
0 or IH 6= 0 or ER 6= 0 or IR 6= 0 or IF 6= 0 or A 6= 0 that is SH > 0 or EH > 0 or IH > 0 or
SR > 0 or IR > 0 or ER > 0 or SF > 0 or IF > 0 or A > 0 must be satis�ed. Now adding
system (13)-(16) we have

 1 +  2s +  3 + �4 � �1(SH + EH + IH +RH)� �2(SF + IF )

� �3(SR + ER + IR)� �1IH � �2IF � �3IR � !1ASH � !2ASR � �4A = 0
(17)

Substituting N1 = SH + EH + IH + RH , N2 = SF + IF and N3 = SR + ER + IR in (17) we
have

 1+ 2s+ 3��1N1��2N2��3N3��1IH��2IF��3IR+�4�!1ASH�!2ASR��4A = 0 (18)

But from equation (16), we have �4 � !1ASH � !2ASR � �4A = 0
It follows that

�1N1 + �2N2 + �3N3 + �1IH + �2IF + �3IR =  1 +  2s +  3

Since  1 +  2s +  3 > 0, �1 > 0, �2 > 0, �3 > 0, �1 > 0, �2 > 0 and �3 > 0 we can discern
that �1N1 > 0, �2N2 > 0, �3N3 > 0, �1IH > 0, �2IF > 0 and �3IR > 0 implying that SH > 0,
EH > 0, IH > 0, SF > 0, IF > 0, SR > 0, ER > 0 and IR > 0.
Hence endemic equilibrium point of the bubonic plague disease model in human, rodent, �ea
and pathogens in the environment exists.

Since the endemic equilibrium points exist, we now determine the conditions under which they
are stable or unstable. We prove whether the solution starting suf�ciently close to the equilib-
rium remains close to the equilibrium and approaches the equilibrium as t!1 , or if there are
solutions starting arbitrary close to the equilibrium which do not approach it respectively.

3.3.5 Global stability of Endemic equilibrium point

Using the idea from the study by Van den Driessche and Watmough (2002), we assert that
the local stability of the Disease Free Equilibrium advocates for local stability of the Endemic
Equilibrium for the reverse condition. We then work to �nd the global stability of Endemic
equilibrium using a Korobeinikov approach as stipulated in Van den Driessche and Watmough
(2002), Korobeinikov (2004) and Korobeinikov (2007) by forming a suitable Lyapunov function
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for our general model as given below:
We construct the Lyapunov function as given in the form:

V =
X

ai(yi � y�i ln yi)

where ai is de�ned as a properly selected positive constant, yi de�nes the population of the ith

compartment, and y�i is the equilibrium point.
We will have the following Lyapunov function,

V = W1(SH � S�H lnSH) +W2(EH � E�H lnEH) +W3(IH � I�H ln IH)
+W4(RH �R�H lnRH) +W5(SR � S�R lnSR) +W6(ER � E�R lnER)
+W7(IR � I�R ln IR) +W8(SF � S�F lnSF ) +W9(IF � I�F ln IF )
+W10(A� A� lnA)

The constants Wi are non-negative in � such that Wi > 0 for i = 1; 2; 3:::10. The Lyapunov
function V together with its constants W1;W2; :::;W10 chosen in such a way that V is continu-
ous and differentiable in a space.

We then compute the time derivative of V from which we get:

dV
dt

= W1(1� S�H
SH

)dSHdt +W2(1� E�H
EH

)dEHdt +W3(1� I�H
IH

)dIHdt
+W4(1� R�H

RH
)dRHdt +W5(1� S�R

SR
)dSRdt +W6(1� E�R

ER
)dERdt

+W7(1� I�R
IR

)dIRdt +W8(1� S�F
SF

)dSFdt +W9(1� I�F
IF

)dIFdt
+W10(1� A�

A )dAdt

Now using the general system (3)-(6) we will have

dV
dt

= W1(1� S�H
SH

)[ 1 +$RH � �1(�fh IFN2
+ !1A)SH � �1SH ]

+W2(1� E�H
EH

)[�1(�fh IFN2
+ !1A)SH � �2EH � �1EH ]

+W3(1� I�H
IH

)[�2EH � �3IH � (�1 + �1)IH ]
+W4(1� R�H

RH
)[�3IH �$RH � �1RH ]

+W5(1� S�R
SR

)[1(�fr IFN2
+ !2A)SR � �3SR]

+W6(1� E�R
ER

)[1(�fr IFN2
+ !2A)SR � 2ER � �3ER]

+W7(1� I�R
IR

)[2ER � (�3 + �3)IR]
+W8(1� S�F

SF
)[ 2s � �(��hf IHN1

+ (1� �)�rf IRN3
)SF � �2SF ]

+W9(1� I�F
IF

)[�(��hf IHN1
+ (1� �)�rf IRN3

)SF � (�2 + �2)IF ]
+W10(1� A�

A )[�4 � !1ASH � !2ASR � �4A]

At endemic equilibrium point we have
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Human

 1 = �$R�H + �1(�fh
I�F
N�2
� !1A�)S�H + �1S�H ; (19a)

(�2 + �1) =
1
E�H

�1(�fh
I�F
N�2

+ !1A�)S�H ; (19b)

�2 =
1
E�H

(�3I�H + (�1 + �1)I�H) (19c)

�3 =
1
I�H

($ + �1)R�H (19d)

Rodent

 3 = 1(�fr
I�F
N�2
� !2A�)S�R + �3S�R (20a)

(2 + �3) =
1
E�R

�
1(�fr

I�F
N�2
� !2A�)S�R

�
(20b)

2 =
1
E�R

(�3 + �3) I�R (20c)

Flea

 2s = �(��hf
I�H
N�1
� (1� �)�rf

I�R
N�3

)S�F + �2S�F (21a)

(�2 + �2) =
1
I�F
�(��hf

I�H
N�1
� (1� �)�rf

I�R
N�3

)S�F (21b)

Pathogens
�4 = !1A�S�H + !2A�S�R + �4A� (22)

We use equations (19),(20),(21) and (22) into time derivative of V , after simpli�cation we get:

dV
dt = �W1(1� S�H

SH
)2 �W2(1� E�H

EH
)2 �W3(1� I�H

IH
)2

�W4(1� R�H
RH

)2 �W5(1� S�R
SR

)2 �W6(1� E�R
ER

)2

�W7(1� I�R
IR

)2 �W8(1� S�F
SF

)2 �W9(1� I�F
IF

)2

�W10(1� A�
A )2 + F (SH ; EH ; IH ; RH ; SR; ER; IR; SF ; IF ; A)

where the function F (SH ; EH ; IH ; RH ; SR; ER; IR; SF ; IF ; A) is non positive, Now following
the procedures by McCluskey (2006) and Korobeinikov and Wake (2002). We have
F (SH ; EH ; IH ; RH ; SR; ER; IR; SF ; IF ; A) � 0 for all SH ; EH ; IH ; RH ; SR; ER; IR; SF ; IF ; A,
Then dV

dt � 0 for all SH ; EH ; IH ; RH ; SR; ER; IR; SF ; IF ; A and it is zero when SH =
S�H ; EH = E�H ; IH = I�H ; RH = R�H ; SR = S�R; ER = E�R; IR = I�R; SF = S�F ; IF = I�F ; A =
A� Hence the largest compact invariant set in SH ; EH ; IH ; RH ; SR; ER; IR; SF ; IF ; A such that
dV
dt = 0 is the singleton E� which is Endemic Equilibrium point of the model system (3) - (6).
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LaSalles’s invariant principle by La Salle (1976) then implies that E� is globally asymptotically
stable in the interior of the region of SH ; EH ; IH ; RH ; SR; ER; IR; SF ; IF ; A and thus leads to
the Theorem 3.5

Theorem 3.5
If R0 > 1 then the bubonic plague disease model system (3) - (6) has a unique endemic equilib-
rium pointE� which is globally asymptotically stable in SH ; EH ; IH ; RH ; SR; ER; IR; SF ; IF ; A

3.4 Numerical Simulations

Numerical simulations are carried out in order to study and understand the dynamics of bubonic
plague disease and demonstrate analytical results. In particular, we illustrate through numerical
simulations the stability of the endemic equilibrium states in human, rodent, �ea and pathogens
in the environment.

3.4.1 Parameter values

The values of the parameters used in bubonic plague disease model are shown in Table 6. The
parameters are taken from the previous studies that relate to this study, existing information and
through estimation using sensitivity analysis and simulations.

Table 6: Parameter values for Bubonic Plague disease model.

Parameter Value Reference/Source

�rf 0.6 Estimated
�fh 0.09 Benkirane et al. (2009)
�fr 4.7 Li (1993)
�1 0.9 Estimated
1 0.9 Estimated
�hf 0.28 Benkirane et al. (2009)
�4 0.89 Estimated
�2 0.04 Keeling and Gilligan (2000a)
2 0.05 Keeling and Gilligan (2000a)
�3 0.1 Keeling and Gilligan (2000a)
$ 0.1 Keeling and Gilligan (2000a)
�1 0.04 Keeling and Gilligan (2000a)

Continued on next page
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Table 6 � Continued from previous page

Parameter Value Reference/Source

�1 0.04 Keeling and Gilligan (2000a)
�3 0.05 Keeling and Gilligan (2000b)
�3 0.2 Galtier and Mouchiroud (1998)
!1 0.01 Keeling and Gilligan (2000a)
!2 0.073 Benkirane et al. (2009)
�4 0.1 Estimated
�2 0.07 Benkirane et al. (2009)
�2 0.03 Benkirane et al. (2009)
 1 0.09 Estimated
 2S 0.008 Keeling and Gilligan (2000b)
 3 0.03 Keeling and Gilligan (2000a)
� 0.99 Estimated

In the simulation, we assume different cases where each sub-population starts at different initial
values (six different initial values) and ultimately returns to its endemic point. We thus justify
that a solution that starts suf�ciently close to the equilibrium remains close to it and it eventually
approaches the equilibrium as t!1.

Figures 14 and 15 shows the dynamical behavior of the human population. The Fig. 14a shows a
marginal increase in number of susceptible human as people moves in through migration. When
the disease becomes endemic, the number of susceptible human decreases as they becomes
exposed to the disease due to the increase of force of infection which resembles to the general
scenario of vector borne infection as depicted in Lemon et al. (2008). Given that the model
assumes no treatment nor vaccination is applied, it thus justi�es the behavior illustrated in Fig.
14b. The �gure shows the very slight increase of a exposed human beings before it drops to its
endemic level as the large number of exposed human progresses and become infected human.
The increase of number of infected human beings from the exposed class is depicted in Fig.
15a. We can see that in the �rst �ve years the number infected human subgroup experience a
substantial increase before it decreases to its endemic level. The decrease in number of infected
human is mainly through natural death and disease induced death whereas very few will recover
and join a recovery class. The number of recovery human shows a slightly increase before it
decreases and reaches its endemic level as illustrated in Fig. 15b (McNeill, 2010; Poland and
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Dennis, 1998).

(a) (b)

Figure 14: Simulation of the model’s solution trajectories to show stability of the endemic points SH
and EH .

(a) (b)

Figure 15: Simulation of the model’s solution trajectories to show stability of the endemic points IH
and RH .

Figure 16 shows the dynamics in rodent population. The results depict in this �gure also agree
with the �ndings by Gage and Kosoy (2005) and Scott and Duncan (2001). We can see from
Fig. 16a that the susceptible rodent population drops very fast within the �rst years, before it
slightly rises due to migration at the rate  3 , to its endemic equilibrium level. The quick drop of
susceptible rodent may be due to the fact that rodents are the primary victim of bubonic plague,
so that when the disease is endemic, most of them are infected and become exposed to the
disease (Dennis and Staples, 2009). The increase of the rate of infection in susceptible rodent
population proportionally increases the number of exposed rodent (Davis and Calvet, 2005).
After the signi�cant increase of the exposed rodent population within the �rst �ve years, it then
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drops to its endemic level. It takes only 2 to 6 days for an exposed rodent to become infectious
(Putzker et al., 2000) which is the reason for a quick decrease of exposed rodent as seen in
Fig. 16b. The infectious rodent population increases as the number of rodent progressing from
exposed class to infectious increase. IR then drops to its endemic level as it experience both
natural and disease induced death as in Fig. 16c.

(a) (b)

(c)

Figure 16: Simulation of the model’s solution trajectories to show stability of the endemic point in

subsystem (4).

The number of susceptible �ea decreases exponentially as they die naturally or acquire infection
from the infected rodent or human at the rate �hf or �rf respectively see Fig. 17a. The increased
death of rodent due to the endemicity of the disease, will as a result lead to scarcity of hosts for
�ea to feed on and thus die (Gage and Kosoy, 2005). The addition of natural and disease induced
death in infected �ea population will lead to a quick drops to its endemic level as illustrated in
Fig. 17b (this agrees with the �ndings in the studies by Keeling and Gilligan (2000a) and Samia
et al. (2011)).
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(a) (b)

Figure 17: Simulation of the model’s solution trajectories to show stability of the endemic point of

subsystem (4).

The pathogens in the environment are removed when they come into contact with the susceptible
human and rodent at the rate !1 and !2 respectively and due to natural death at the rate �4.
Since we assume that human and rodent infectious classes have a negligible contribution in
increasing the number of pathogens in the environment (Equation (6)), then as the disease
becomes endemic, the rates !1 and !2 increase which in turn decrease the number of pathogens
in the environment. Pathogens are also highly affected by the conditions in the environment
(temperature, humidity and precipitation). Most of the time, this leads to a massive decay of the
pathogens population in the environment as the environment is not favorable for their survival
and growth (Ari et al., 2011). Consequently the number of pathogens in the environment will
gradually decrease to its endemic level as in Fig 18.

Figure 18: Solution trajectories to show stability of the endemic point in (6).
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3.5 Conclusion

In this chapter, we considered a bubonic plague in human, rodent and �ea with yersinia pestis
in the environment. We carried out the stability analysis of the equilibrium states in which the
analytical results show that the disease free equilibrium point is locally and globally asymptot-
ically stable when R0 < 0 and unstable when R0 > 0. This result necessitates that the basic
reproduction number, is a key non-dimension parameter that dictates whether the disease will
spread or die out. When R0 is increased or decreased above or below unity compels to the per-
sistence or eradication of bubonic plague disease respectively. The decrease or increase of the
basic reproduction number will as a result affects negatively or positively the �ea’s infectious
period 1

�2+�2
, probability that rodent survive the infectious class 2

�3+2
, the adequate contact rate

�ea to human �fh, rodent’s infective period 1
�3+�3

, the probability that �ea gets the disease from
the rodent or human which are (1 � �)�rf or ��hf respectively The human infectious period

1
�1+�1+�3

, probability that human survive the infectious class �2
�1+�2

, the probability at which
�eas gets infected �, the adequate contact rate �ea to rodent �fr and the probability at which
human and rodent become exposed to the the disease which are �1 and 1 respectively. The
endemic equilibrium point is also found to be locally and globally asymptotically stable when-
ever they exist. Using the model’s parameter values from literature reviewed in this chapter and
some estimated we use the simulation to show the endemic equilibrium points are stable thus
supports the analytical results. We observe that without intervention that controls the value of
R0 to less than a unity, bubonic plague may be very fatal and a life threatening disease whenever
it occurs.
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CHAPTER FOUR

Modeling the Dynamics of Pneumonic Plague 3

Abstract: A deterministic mathematical model to study the dynamics of pneumonic plague is
developed and analyzed. We compute the basic reproduction number using the next generation
matrix method and use it to derive and establish the condition for local and global asymptotic
stability of equilibrium points. Sensitivity and elasticity analysis is used to determine the effect
(positive or negative) of parameters on the basic reproduction number. The results show that
R0 is most sensitive to expected number of new cases of pathogens in the environment caused
by one rodent infected with pneumonic plague and it is least sensitive to expected number
of new cases of human beings infected with pneumonic plague caused by pathogens in the
environment. We then use numerical simulations to show the dynamical behavior of pneumonic
plague disease in the compartments. The results show clearly the vital role played by �eas,
human beings and rodents with bubonic plague in the increase of the number of individuals
with pneumonic plague. The result also show that the increase of the number of individuals
with pneumonic plague is greatly in�uenced by the pair kij (expected number of new cases of
i caused by one infected individual of j) that constitute the basic reproduction number which
should also be highly considered when planning for any control strategies against the disease.

Key words: Pneumonic plague; Pathogens in the environment; airborne transmission; Yersinia
pestis.

4.1 Introduction

Pneumonic plague arises when Yersinia Pestis infects the lungs. It is an extreme type of lung
infection, exceedingly contagious and incurable unless identi�ed within the �rst twenty-four
hours (Gamsa, 2006). Among all three main types of plague namely Bubonic plague, septicemic
plague and pneumonic plague, it is the most serious and deadliest form of a plague epidemic.
The symptoms normally come abruptly and are very severe, characterized by rapid prostration;
shallow, distressed and very rapid breathing; individual coughing watery and bloody sputum
which contain bacteria (yersinia pestis); high body temperature and bleeding. Individuals with
Bubonic or Septicemic plague get the disease from the bite of an infected �ea that is primarily
infected by the wild rats which are the primary reservoir of Yersinia pestis. If not treated, Y.
pestis reaches the lungs and thus develops pneumonic plague (Scott and Duncan, 2001).

3This chapter is based on a manuscript: Modeling the Dynamics of Pneumonic Plague
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Agar et al. (2009) examined the progression of infection in rats that were exposed to aerosolized
Yersinia Pestis in a whole body. The study was able to demonstrate direct transmission of
Yersinia pestis from infected to a susceptible animals (rats) held in the same cage. The in-
fection transpired via aerosol droplets produced when pneumonic plague infected rat coughs.
These �ndings extend to all animals including human beings, rodents and other domestic an-
imals with lungs. When an individual (human beings or rodents and other domestic animals)
with pneumonic plague coughs, the bacteria are released into the air. Then when an individual
with lungs breathes in the aerosolized bacteria, there is a high possibility that this particular
individual may get pneumonic plague (Prentice and Rahalison, 2007).

Ge et al. (2015) investigated the case where the patient died after contact with a dog that had
captured pneumonic plague infected marmot. In this case, the infection was a result of exposure
to Yersinia pestis aerosols from sputum and throat samples. In their study, they found that all
of the dogs that ate the marmot were infected with Y. pestis without symptoms. The disease
was also detected in the serum of the doctors and in people who had been in contact with the
patient for a long period of time in which the transmission may be associated to wearing of
masks. The study justify the possibility of rodent to rodent, rodent to human and human to
human transmission of pneumonic plague as a result of physical contact or through eating or
biting the infected individual.

Pneumonic plague has a tremendous transmission capability from one individual to another. It
is a highly contagious disease which is the feature that makes it very dangerous when it enters
in a community. It is also the reason why pneumonic plague disease appears on the top list
of the diseases that can be used as a bioweapon. Begier et al. (2006) conducted a study to
investigate the communicability in a natural occurring pneumonic plague cluster. The cluster
comprised of two simultaneous index patient’s caregiver pairs. The result showed that both
index patients transmitted pneumonic plague to only one caregiver each. It justify the possibility
of the person to person transmission of pneumonic plague through respiratory droplets in which
all individuals within droplet range became ill.

The rate of death due the disease for untreated individual with pneumonic plague increases to
100% within 2 to 7 days after infection. Richard et al. (2015) studied an outbreak of pneumonic
plague occurred in Madagascar in the year 2011, the disease remained in the community for the
period of over twenty seven (27) days. In those twenty seven days, there were seventeen (17)
human beings suspected to have gotten the disease, two (2) cases were presumptive, and three
were con�rmed to have gotten the disease. The study postulates that there were �fteen (15)
untreated patients and they all died due to the disease. The result shows that in this outbreak
fatality rate was 100% for all non treated patients. This is to say that the rate of fatality in
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Pneumonic plague is extreme, and it should therefore be given a special attention when it occurs.

Pneumonic plague is considered perilous mostly due to the fact that at present there is no effec-
tive vaccine. More over the instrument for diagnostic test especially the rapid diagnostic tests
are scarce and the situation is even worse in African countries. Also it is the form of plague that
its transmission capability is high as it can be transmitted directly between individuals (human
and rodent or other domestic animal) and through the interaction with the infected environment
(Zhou and Yang, 2014; Pechous et al., 2015; Massin et al., 2007). It is certain highly conta-
gious infectious disease which is also listed as a leading critical biological agents with the high
potential of being used as a bio weapon (Massin et al., 2007).

The transmission and spreading capacity that characterize pneumonic plague signify that, ex-
treme public health measures should be considered if this kind of disease occur in the com-
munity. There should be sustainable planning to do a very rapid evaluation of the outbreak
to determine the extent of exposure and help develop the most effective disease containment
strategies (Dembek, 2005). To do all of these, there is a need for public health authorities and
all health stakeholders to conduct a thorough research on the subject.

In this study we formulate a mathematical model to enable us understand the dynamics of pneu-
monic plague. We compute the basic reproduction number, analyze the stability of equilibrium
points, study the behaviour of the model through numerical simulation, discuss the results and
then make conclusions and recommendations.

4.2 Material and Methods

4.2.1 Model Assumptions

We formulate a mathematical model to study the dynamics of pneumonic plague. The developed
model rely on the following assumptions:

(i) Bubonic plague is the primary plague infection of pneumonic plague disease,

(ii) the primary infection of the disease is ignored when one gets the secondary infection of
the same,

(iii) all individuals are born susceptible,

(iv) members of the population mix homogeneously,

(v) age, sex, social status, do not affect the probability of being infected,
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(vi) on recovery human attain a temporary immunity,

(vii) there is no recovery in non-human host populations (they remain infected until they die),

(viii) the disease transmission from the soil/environment to either susceptible human being or
rodent population at their respective adequate contact rates has a negligible effect to the
dynamics of the pathogens population,

(ix) there is no vertical transmission, but only horizontal transmission is possible in all popu-
lations.

4.2.2 Description of pneumonic plague in various population groups

In the model, we have four populations namely the human population, �eas, rodents and the
pathogens in the environment. The human population is divided into �ve sub-groups: the group
of people who have not contracted the disease but may get it if they get in contact with infectious
agent to be referred to as susceptibles and denoted as SH ; People who have the disease but have
not shown any symptoms and are incapable of transmitting the disease i.e the Exposed denoted
by EH ; those who are infected and are capable of transmitting the disease are divided into two
sub-groups: there are those who have bubonic plague which, in this model, we regard as a
primary stage of pneumonic plague denoted by IHA and the others who have pneumonic plague
disease denoted by IHB. The fraction of the population in IHA if treated may recover and move
to sub-group RH and if not, they either die or progress and become pneumonic plague disease
infectives IHB. The population in the sub-group IHB then they recover and progress to the
sub-group RH if treated and otherwise they die.

The �ea population is divided into two sub-groups: those who have not contracted the disease
but may get it if they get in contact with infectious agent i.e. susceptible �ea denoted by SF and
those who are infected and are capable of transmitting the disease i.e. infectious �ea denoted
by IF .

The rodent population is divided into four sub-groups: those who have not contracted the dis-
ease but may get it if they get in contact with infectious agent i.e. susceptible rodent SR, those
who have the disease but have not shown any symptom and are incapable of transmitting the
disease referred to as the exposed rodent denoted by ER; those who are infected and are capable
of transmitting the disease and these are divided into two subgroups: those who have bubonic
plague denoted by IRA and others who have pneumonic plague disease denoted by IRB. To
develop the model equations, we use the variables and parameters as described in Table 7 and
Table 8.
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4.2.3 Variables and Parameters used in the model and their description

Table 7: Variables and their description for pneumonic plague.

Variable Description

SH Susceptible human beings
EH Exposed human beings
IHA Infectious human beings with bubonic plague
IHB Infectious human beings with pneumonic plague
RH Recovered human beings
SR Number of Susceptible rodents
ER Number of Exposed rodents
IRA Number of Infectious rodents with bubonic plague
IRB Number of Infectious rodents with pneumonic plague
SF Number of susceptible �eas
IF Number of infected �eas
A Number of pathogens in the environment

Table 8: Parameters and their description for pneumonic plague.

Parameters Description

�rf Adequate contact rate: rodent to �ea
�fh Adequate contact rate: �ea to human being
�fr Adequate contact rate: �ea to rodent
�1 Probability that human progress from susceptible to exposed
1 Probability that rodent progress from susceptible to exposed
�hh Adequate contact rate: IHB to SH
�hr Adequate contact rate: IHB to SR
�rr Adequate contact rate: IRB to SR
�rh Adequate contact rate: IRB to SH
�2 Progression rate of exposed human being to infected
2 Progression rate of exposed rodent to infected
�3 Human recovery rate from human being infected by bubonic
�3 Progression rate from IHA to IHB
$ Progression rate of recovered human being to susceptible

Continued on next page
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Table 8 � Continued from previous page

Parameters Description

�1 Burbonic plague Disease induced death rate for human being
�1 Pneumonic plague Disease induced death rate for human being
�2 Bubonic plague Disease induced death rate for �ea
�1 Natural death rate for human being
�2 Natural death rate for �ea
�3 Pneumonic plague Disease induced death rate for rodent
�2 Burbonic plague Disease induced death rate for rodent
�3 Natural death rate for rodent
!1 Adequate contact rate: Pathogens in the environment to human being
!2 Adequate contact rate: Pathogens in the environment to rodent
�1 Transmission rate of pathogens to the environment by IHB
�2 Recruitment rate of pathogens to the environment by IRB
�4 Natural death rate for pathogens
�4 Pathogens multiplication rate
 1 Immigration rate of human beings
 2s Immigration rate of susceptible �eas
 3 Immigration rate of rodent
� The probability that IHA progresses to either IHB or RH

�1 The probability that EH progresses to either IHA or IHB
�2 The probability that ER progresses to either IRA or IRB
�1 The probability that �ea gets infection from IHA
�2 The probability that �ea gets infection from IHB
�3 The probability that �ea gets infection from IRA
�4 The probability that �ea gets infection from IRB
�1 The probability that migrant human beings are Susceptible
� The probability at which �eas become infected.

4.2.4 Description of interactions

Fleas in sub-group SF get Yersinia pestis bacteria through biting infected rodents who are the
primary reservoir for the bacteria and/or infected human being at the rates �rf and �hf respec-
tively, and become the infected �ea IF .
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The groups SH and SR may get the disease in various ways; one is through the bites by the
infected �ea (IF ) at the rates �fh and �fr respectively and then become latently infected and
thus progress to be exposed human population EH and exposed rodent population ER at the
probability �1 and 1 respectively. They may as well get the disease when they adequately
contact the subgroups IHB and IRB who are infected by pneumonic plague. The transmission
may be through airborne and/or physical contact (bloody sputum). The interaction may be in
such a way that IHB may come into contact and infect the subgroups SH and SR at the rate �hh
and �hr respectively. Similarly, IRB may come into contact and infect the sub-groups SH and
SR at the rates �rh and �rr respectively.

After 2 to 7 days the sub-groups EH and ER become infectious and capable of transmitting the
disease. The proportion �1 of exposed human beings (EH) progress to subgroup IHA and the
other proportion (1� �1) to sub-group IHB at the rate �2, exposed rodents (ER) progress to the
sub-group IRA and other (1� �1) to sub-group IRB at the rate 2.

If treated the fraction of compartment IHA recover and attain temporary immunity at a rate �3

and thus progress to a subgroup RH which then return to a sub-group SH at a rate $. Other
human beings with bubonic plague (IHA) progress to sub-group IHB at a rate �3 and the rest
die either naturally or due to the disease at rates �1 and �1, respectively.

Individuals in compartment IHB if treated they recover and progress to RH at the rate �4 which
then return to a sub-group SH at a rate $. Otherwise they die either from the disease at a rate �1

or naturally at a rate of �1. After 2 to 7 days of infection the compartment IRA may progress to
subgroup IRB at a rate 3 and the rest die either naturally or due to a disease at a rates �3 and �2

respectively. Subgroup IRB die either from the disease at a rate �3 or naturally at a rate of �3.

The pathogen may survive in the environment if the conditions are favorable for their survival.
Through airborne transmission or touching the contaminated soil/environment may cause infec-
tions to SH and SR at the rates of !1 and !2 respectively. Pathogens are constantly recruited into
the environment at a rate �4. However the human beings and rodents infected with pneumonic
plague (IHB and IRB) also shad yersinia pestis bacteria in the environment A at rates �1 and �2

respectively.

Pathogens in the environment suffer natural mortality at a rate �4. The human population in
subgroups SH andEH , �ea population in sub-group SF and rodent population in sub-groups SR
andER suffer natural mortality at rates �1; �2 and �3 respectively. The compartments IHA, IHB,
IF , IRA and IRB suffer both natural death at rates �1; �2 and �3 and disease induced mortality
at rates �1; �1; �2; �2 and �3, respectively. Human beings, �eas and rodents are recruited through
immigration at rates  1,  2 and  3 respectively.
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Basing on the assumptions and the description of interactions stated above, the dynamics of
pneumonic plague is as in Fig. 19.

Figure 19: Compartmental model for pneumonic plague

4.2.5 Model Equations for Pneumonic Plague

Using the assumptions stated above, variables and parameters and their description in Tables 7
and 8, description of the dynamics and compartmental diagram in Fig. 19, the SEIR model for
pneumonic plague is the following set of ordinary differential equations:

Humans

dSH
dt

=  1 +$RH � �1(�hh
IHB
N1

+ �fh
IF
N2

+ �rh
IRB
N3

+ !1A)SH � �1SH ; (1a)

dEH
dt

= �1(�hh
IHB
N1

+ �fh
IF
N2

+ �rh
IRB
N3

+ !1A)SH � (�2 + �1)EH (1b)

dIHA
dt

= �1�2EH � ��3IHA � (1� �)�3IHA � (�1 + �1)IHA (1c)

dIHB
dt

= (1� �1)�2EH + ��3IHA � �4IHB � (�1 + �1)IHB (1d)

dRH

dt
= �4IHB + (1� �)�3IHA �$RH � �1RH (1e)
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Rodents

dSR
dt

=  3 � 1(�rr
IRB
N3

+ �fr
IF
N2

+ �hr
IHB
N1

+ !2A)SR � �3SR (2a)

dER
dt

= 1(�rr
IRB
N3

+ �fr
IF
N2

+ �hr
IHB
N1

+ !2A)SR � (2 + �3)ER (2b)

dIRA
dt

= �22ER � 3IRA � (�3 + �2)IRA (2c)

dIRB
dt

= (1� �2)2ER + 3IRA � (�3 + �3)IRB (2d)

Fleas

dSF
dt

=  2s � �(�hf�1
IHA
N1

+ �rf (1� �1)
IRA
N3

)SF � �2SF (3a)

dIF
dt

= �(�hf
�1IHA
N1

+ �rf
(1� �1)IRA

N3
)SF � (�2 + �2)IF (3b)

Pathogens

dA
dt

= �4 + �1
IHB
N1

+ �2
IRB
N3
� �4A (4)

4.3 Basic properties of the model

4.3.1 Invariant region

Since pneumonic plague involves human being, rodent, vector and pathogens populations, then,
in the modeling process, we assume that all state variables and parameters of the model are non-
negative for 8t � 0. The model system has four subgroups which are analyzed separately. The
model system is analyzed in a suitable feasible region where all state variables are positive. This
region will be obtained under the following theorem;

Theorem 4.6
All forward solutions in R12

+ of the system are feasible 8t � 0 if they enter the invariant region
� for � = 
H � 
R � 
F � 
A

where


H = (SH ; EH ; IHA; IHB; RH) 2 R5
+ : SH + EH + IHA + IHB +RH � N1


R = (SR; ER; IRA; IRB) 2 R4
+ : SR + ER + IRA + IRB � N3


F = (SF ; IF ) 2 R2
+ : SF + IF � N2


A = A 2 R1
+

and � is the positive invariant region of the pneumonic plague system
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Proof. We prove the theorem by considering each sub-population.

For human population:
We need to prove that the solution of the system (1) are feasible 8t > 0 as they enter invariant
region 
H . We now let 
H = (SH ; EH ; IHA; IHB; RH) 2 R5 be solution space of the system
(1) with non-negative initial conditions.
The total human population is

N1 = SH + EH + IHA + IHB +RH :

Then,
dN1

dt
=
dSH
dt

+
dEH
dt

+
dIHA
dt

+
dIHB
dt

+
dRH

dt
(5)

Adding up the system (1) we get,

dN1

dt
=  1 � �1N1 � �1IHB � �1IHA

We will then have
dN1

dt
�  1 � �1N1

We then get
dN1

dt
+ �1N1 �  1

Finding the integrating factor IF = e�1t and multiplying it through out we get

e�1tdN1

dt
+ e�1tN1�1 �  1e�1t

which gives
d(N1e�1t)

dt
�  1e�1t

Integrating on both sides yields

N1e�1t �
 1

�1
e�1t + C

Multiplying the equation by e��1t we get

N1 �
 1

�1
+ Ce��1t

Using the initial condition t = 0; N1(t = 0) = N10

then we will get

N10 �
 1

�1
� C

Substituting for the constant C we get

N1 �
 1

�1
+ (N10 �

 1

�1
)e��1t
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Figure 20: Feasible region for human system

When N10 >  1
�1

, the population decreases asymptotically to  1
�1

and when N10 <  1
�1

the human
population increases asymptotically to  1

�1
as in Fig. 20. Hence all the feasible solutions of the

system enter the region


H =
�

(SH ; EH ; IHA; IHB; RH) : N1 �Max
�
N10;

 1

�1

��

For rodent population:
We need to prove that the solutions of the system (rodent) are feasible 8t > 0 as they enter
invariant region 
R. We now let 
R = (SR; ER; IRA; IRB) 2 R4 be solution space of the
system with non-negative initial conditions.
The total rodent population is,

N3 = SR + ER + IRA + IRB:

Then
dN3

dt
=
dSR
dt

+
dER
dt

+
dIRA
dt

+
dIRB
dt

: (6)

Adding up the system (2) we get,

dN3

dt
=  3 � �3N3 � �3IRB � �2IRA:

We will then have
dN3

dt
�  3 � �3N3:

We then get
dN3

dt
+ �3N3 �  3:

Finding the integrating factor IF = e�3t and multiplying it through out we get

e�3tdN3

dt
+ e�3tN3�3 �  3e�3t;
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which gives
d(N3e�3t)

dt
�  3e�3t:

Integrating on both sides yields

N3e�3t �
 3

�3
e�3t +D;

multiplying the equation by e��3t we get

N3 �
 3

�3
+De��3t:

Using the initial condition t = 0; N3(t = 0) = N30 we get

N30 �
 3

�3
� D;

Substituting the constant we get

N3 �
 3

�3
+ (N30 �

 3

�3
)e��3t:

When N30 >  3
�3

, the population decreases asymptotically to  3
�3

and when N30 <  3
�3

the rodent
population increases asymptotically to  3

�3
as in Fig. 21.

Figure 21: Feasible region for rodent system

Hence all the feasible solutions of the system enter the region


R =
�

(SR; ER; IRA; IRB) : N3 �Max
�
N30;

 3

�3

��

For �ea population
We need to prove that the solutions of the system (Flea) are feasible 8t > 0 as they enter
invariant region 
F . We now let 
F = (SF ; IF ) 2 R2 be solution space of the system with
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non-negative initial conditions.
The total �ea population is

N2 = SF + IF

Then
dN2

dt
=
dSF
dt

+
dIF
dt

(7)

Adding up the system (3) we get,

dN2

dt
=  2s � �2N2 � �2IF

which can be written as
dN2

dt
�  2s � �2N2

We then get
dN2

dt
+N2�2 �  2s

Finding the integrating factor IF = e�2t and multiplying it through out we get

e�2tdN2

dt
+ e�2tN2�2 � ( 2s)e�2t

which gives
d(N2e�2t)

dt
� ( 2s)e�2t

Integrating on both sides yields

N2e�2t �
 2s

�2
e�2t + E

Multiplying the equation by e��2t we get

N2 �
 2s

�2
+ Ee��2t

Using the initial condition t = 0; N2(t = 0) = N20

then we will get

N20 �
 2s

�2
� E

Substituting the constant we get

N2 �
 2s

�2
+ (N20 �

 2s

�2
)e��2t

When N20 >  2s
�2

the population decreases asymptotically to  2s
�2

and when N20 <  2s
�2

the �ea
population increases asymptotically to  2s

�2
as in Fig. 22. Hence all the feasible solutions of the

system enter the region


F =
�

(SF ; IF ) : N2 �Max
�
N20;

 2s

�2

��
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Figure 22: Feasible region for �ea system

For pathogens population
We need to prove that the solutions of the system (pathogens) are feasible 8t > 0 as they enter
invariant region 
A we now let 
A = A 2 R1

+ be any solution of the system with non-negative
initial conditions.

The total pathogens population is A,
then from the equation (4)

dA
dt

= �4 + �1
IHB
N1

+ �2
IRB
N3
� �4A: (8)

But
IHB � N1; IRB � N3:

Then this implies that
IHB
N1
� 1;

IRB
N3
� 1:

The equation (8) becomes
dA
dt
� �4 + �1 + �2 � �4A:

Then we will have
dA
dt

+ �4A � �1 + �2 + �4:

Finding the integrating factor IF = e�4t and multiplying it through out we get

e�4tdA
dt

+ e�4t�4A � e�4t(�1 + �2 + �4):

Which gives
d(Ae�4t

dt
� (�1 + �2 + �4)e�4t:

Integrating on both sides yields

Ae�4t �
�1 + �2 + �4

�4
e�4t +B;
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multiplying the equation by e��4t we get

A(t) �
�1 + �2 + �4

! + �4
+Be��4t:

Using the initial condition t = 0; A(t = 0) = A0

then we will get

A0 �
�1 + �2 + �4

�4
� B;

substituting the constant we get

A(t) �
�1 + �2 + �4

�4
+ (A0 �

�1 + �2 + �4

�4
)e��4t:

When A0 > �1+�2+�4
�4

pathogens decreases asymptotically to �1+�2+�4
�4

and when N30 <
�1+�2+�4

�4
pathogens increases asymptotically to �1+�2+�4

�4
as in Fig. 23. Hence the feasible

Figure 23: Feasible region for pathogens

solutions of the system enter the region


A =
�
A : A �Max

�
A0;

�1 + �2 + �4

�4

��

4.3.2 Positivity of the solution

All variables and parameters of the model must be non negative 8t � 0. We now solve the
equations of the system in their patches for testing the positivity.

Theorem 4.7
Let the initial values of the system (1), (2), (3) and (4) be: (SH(0)SR(0); SF (0); A0) > 0
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and (EH(0); IHA(0); IHB(0); RH(0); ER(0); IRA(0); IRB(0); IF (0)) � 0: Then the solution set
SH(t); SR(t); SF (t); A(t); EH(t); IHA(t); IHB(t); RH(t); ER(t); IRA(t); IRB(t) and IF (t) are
positive 8t � 0:

Proof. We will prove each equation from all the four systems.
For human system
Using the �rst equation in the human system we have,

dSH
dt

=  1 +$RH � �1(�hh
IHB
N1

+ �fh
IF
N2

+ �rh
IRB
N3

+ !1A)SH � �1SH

� ��1(�hh
IHB
N1

+ �fh
IF
N2

+ �rh
IRB
N3

+ !1A)SH � �1SH :

dSH
dt
� �(�1(�hh

IHB
N1

+ �fh
IF
N2

+ �rh
IRB
N3

+ !1A) + �1)SH :

Integration yields

SH � SH0e
�
R t
0 (�1(�hh

IHB
N1

+�fh
IF
N2

+�rh
IRB
N3

+!1A)+�1)d� > 0

since
e�

R t
0 (�1(�hh

IHB
N1

+�fh
IF
N2

+�rh
IRB
N3

+!1A)+�1)d� > 0:

From the second equation we have

dEH
dt

= �1(�hh
IHB
N1

+ �fh
IF
N2

+ �rh
IRB
N3

+ !1A)SH � �1�2EH � (1� �1)�2EH � �1EH :

Thus
dEH
dt
� �(�2 + �1)EH :

Integration yields
EH � EH0e�(�2+�1)t > 0

since
e�(�2+�1) > 0:

From the third equation of system (1) we have

dIHA
dt

= �1�2EH � ��3IHA � (1� �)�3IHA � (�1 + �1)IHA:

Thus
dIHA
dt
� �(�3 + �1 + �1)IHA:

Integrating we get
IH � IHA0e�(�3+�1+�1)t > 0:
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since
e�(�3+�1+�1)t > 0:

Fourth equation of the system we will have

dIHB
dt

= (1� �1)�2EH + ��3IHA � �4IHB � (�1 + �1)IHB:

Thus
dIHA
dt
� �(�4 + �1 + �1)IHB:

Integrating we get
IH � IHA0e�(�4+�1+�1)t > 0;

since
e�(�4+�1+�1) > 0:

And the last equation in system (1) we have

dRH

dt
= �4IHB + (1� �)�3IHA �$RH � �1RH :

Thus
dRH

dt
� �($ + �1)RH :

Integrating we get
RH � RH0e�($+�1)t > 0;

since
e�($+�1) > 0:

For rodent system
Using equation one from system (2) we have

dSR
dt

=  3 � 1(�rr
IRB
N3

+ �fr
IF
N2

+ �hr
IHB
N1

+ !2A)SR � �3SR:

Thus
dSR
dt
� �(1(�rr

IRB
N3

+ �fr
IF
N2

+ �hr
IHB
N1

+ !2A) + �3)SR:

Integrating we get

SR � SR0e
�
R t
0 (1(�rr

IRB
N3

+�fr
IF
N2

+�hr
IHB
N1

+!2A)+�3)d� > 0;

since
e�

R t
0 (1(�rr

IRB
N3

+�fr
IF
N2

+�hr
IHB
N1

+!2A)+�3)d� > 0:

From the second equation of the system (2) we have

dER
dt

= 1(�rr
IRB
N3

+ �fr
IF
N2

+ �hr
IHB
N1

+ !2A)SR � (1� �2)2ER � �22ER � �3ER;
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from here we get
dER
dt
� �(2 + �3)ER:

Integrating we get
ER � ER0e�(2+�3)t > 0;

since
e�(2+�3)t > 0:

And from the third equation of system (2) we have

dIRA
dt

= �22EH � 3IRA � (�3 + �2)IRA:

We will then have
dIR
dt
� �(3 + �3 + �2)IRA:

Integrating we get
IR � IR0e�(3+�3+�2)t > 0;

since
e�(3+�3+�2)t > 0:

And from the last equation of system (2) we have

dIRB
dt

= (1� �2)2EH + 3IRA � (�3 + �3)IRB:

We will then have
dIRB
dt
� �(�3 + �3)IRB:

Integrating we get
IR � IRB0e�(�3+�3)t > 0;

since
e�(�3+�3)t > 0:

For �ea system
Now from the �rst equation of system (3) we will have

dSF
dt

=  2s � �(�hf
�1IHA + �2IHB

N1
+ �rf

�3IRA + �4IRB
N3

)SF � �2SF :

dSF
dt
� �(�(�hf

�1IHA + �2IHB
N1

+ �rf
�3IRA + �4IRB

N3
) + �2)SF :

Integrating we get

SF � SF0e
�
R t
0 (�(�hf

�1IHA+�2IHB
N1

+�rf
�3IRA+�4IRB

N3
)+�2)d� > 0;
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since
e�

R t
0 (�(�hf

�1IHA+�2IHB
N1

+�rf
�3IRA+�4IRB

N3
)+�2)d� > 0:

Taking the second equation we have

dIF
dt

= �(�hf
�1IHA + �2IHB

N1
+ �rf

�3IRA + �4IRB
N3

)SF � (�2 + �2)IF :

Then we have
dIF
dt
� �(�2 + �2)IF :

Integrating we have
IF � IF0e�(�2+�2)t > 0;

since
e�(�2+�2)t > 0:

For pathogens in the environment
The subgroup has only one equation so using equation (4) we will have

dA
dt

= �4 + �1
IHB
N1

+ �2
IRB
N3
� �4A:

Then we will have
dA
dt
� ��4A:

Integrating we get
A � A0e��4t > 0;

Since
e��4t > 0:

4.4 Model analysis

In this section, we examine the existence of equilibrium states, reproduction number and stabil-
ity of the equilibrium states.

4.4.1 Disease Free Equilibrium

The model has a disease free equilibrium which is obtained by setting IHA = IHB = EH =
RH = 0, IRA = IRB = ER = 0, IF = 0 and A = 0 for human beings, rodents, �eas and
pathogens systems respectively. We substitute the above into the system (1) - (4) which are the
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systems for human beings, rodents, �eas and pathogens in the environment respectively. Then
we have the disease free-equilibrium point given as E0

H =
�
 1
�1
; 0; 0; 0; 0

�
, E0

R =
�
 3
�3
; 0; 0; 0

�
,

E0
F =

�
 2s
�2
; 0
�

and E0
A = 0 for human being, rodent, �ea and pathogen, respectively.

Then the disease free equilibrium of the entire system

E0(S0
H ; E

0
H ; I

0
HA; I

0
HB ; R

0
H ; S

0
R; E

0
R; I

0
RA; I

0
RB ; S

0
F ; I

0
F ; A

0) =
�
 1

�1
; 0; 0; 0; 0;

 3

�3
; 0; 0; 0;

 2s

�2
; 0; 0

�
:

4.4.2 The next-generation matrix

We de�ne the basic reproduction number as the expected number of secondary cases produced
by a single infectious individual during the entire infectious period of that particular individual
into a completely susceptible population. The value of this dimensionless quantity (R0 ) dictate
different epidemiological criteria such that: If R0 < 1 then an infected individual in entirely
susceptible population can produce less than one secondary cases of infection. This indicates
that the disease cannot develop and may be eradicated from the population, which means that the
disease-free equilibrium point is asymptotically stable. On the other hand, If R0 > 1 it means
that an infected individual in entirely susceptible population produce more than one secondary
cases of infection. This indicates the persistence of the disease in the population for a long time
and that the disease free equilibrium point is unstable (Allen et al., 2008).

We compute the basic reproduction number R0 using the next generation matrix as outlined by
Heesterbeek (2000) and Mpeshe et al. (2014). We �rst categorize individuals by their state at the
moment they become infected (type at infection). These types-at-infection refers speci�cally
to the birth of the infection in the individual. These categories (types at infection) differ in the
way they transmit disease and their ability to produce secondary cases.

For our case, we have six categories and we label them as follows: Human infected with bubonic
plague (type 1), human infected with pneumonic plague (type 2), rodent infected with bubonic
plague (type 3), rodent infected with pneumonic plague (type 4), �ea infested with pathogens
(type 5) and the pathogens in the environment (type 6). Since the system has six types-at-
infection, the next-generation matrix, K, will be a 6� 6 matrix with elements kij ,s. Each of the
elements kij stands for expected number of new cases of i caused by one infected individual of
j. We now de�ne the next-generation matrix K whose entries are kij . This matrix is given as;
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K =

0

BBBBBBBBBB@

k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66

1

CCCCCCCCCCA

(9)

Then, R0 = �(K) where �(K) is spectral radius of K.

The element k11 of the matrix 9 is the expected number of new cases of human beings infected
with bubonic plague caused by one infected human beings with bubonic plague, k12 is the
expected number of new cases of human beings infected with bubonic plague caused by one
infected human beings with pneumonic plague, k13 is the expected number of new cases of
human infected with bubonic plague caused by one infected rodent with bubonic plague, k14

is the expected number of new cases of human beings infected with bubonic plague caused by
one infected rodent with pneumonic plague, k15 is the expected number of new cases of human
beings infected with bubonic plague caused by one infected �ea, k16 is the expected number of
new cases of human beings infected with bubonic plague caused by infected environment.

k21 is the expected number of new cases of human beings infected with pneumonic plague
caused by one infected human beings with bubonic plague, k22 is the expected number of new
cases of human beings infected with pneumonic plague caused by one infected human beings
with pneumonic plague, k23 is the expected number of new cases of human beings infected
with pneumonic plague caused by one infected rodent with bubonic plague, k24 is the expected
number of new cases of human beings infected with pneumonic plague caused by one infected
rodent with pneumonic plague, k25 is the expected number of new cases of human beings in-
fected with pneumonic plague caused by one infected �ea, k26 is the expected number of new
cases of human beings infected with pneumonic plague caused by infected environment.

k31 is the expected number of new cases of rodent infected with bubonic plague caused by one
infected human beings with bubonic plague, k32 is the expected number of new cases of rodent
infected with bubonic plague caused by one infected human beings with pneumonic plague,
k33 is the expected number of new cases of rodent infected with bubonic plague caused by one
infected rodent with bubonic plague, k34 is the expected number of new cases of rodent infected
with bubonic plague caused by one infected rodent with pneumonic plague, k35 is the expected
number of new cases of rodent infected with bubonic plague caused by one infected �ea, k36 is
the expected number of new cases of rodent infected with bubonic plague caused by infected
environment.
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k41 is the expected number of new cases of rodent infected with pneumonic plague caused by
one infected human beings with bubonic plague, k42 is the expected number of new cases of
rodent infected with pneumonic plague caused by one infected human beings with pneumonic
plague, k43 is the expected number of new cases of rodent infected with pneumonic plague
caused by one infected rodent with bubonic plague, k44 is the expected number of new cases of
rodent infected with pneumonic plague caused by one infected rodent with pneumonic plague,
k45 is the expected number of new cases of rodent infected with pneumonic plague caused by
one infected �ea, k46 is the expected number of new cases of rodent infected with pneumonic
plague caused by infected environment.

k51 is the expected number of new cases of infected �ea caused by one infected human beings
with bubonic plague, k52 is the expected number of new cases of infected �ea caused by one
infected human beings with pneumonic plague, k53 is the expected number of new cases of
infected �ea caused by one infected rodent with bubonic plague, k54 is the expected number
of new cases of infected �ea caused by one infected rodent with pneumonic plague, k55 is the
expected number of new cases of infected �ea caused by one infected �ea, k56 is the expected
number of new cases of infected �ea caused by infected environment.

k61 is the expected number of new cases of infected environment caused by one infected human
beings with bubonic plague, k62 is the expected number of new cases of infected environment
caused by one infected human beings with pneumonic plague, k63 is the expected number of
new cases of infected environment caused by one infected rodent with bubonic plague, k64 is
the expected number of new cases of infected environment caused by one infected rodent with
pneumonic plague, k65 is the expected number of new cases of infected environment caused by
one infected �ea and k66 is the expected number of new cases of infected environment caused
by infected environment.

Some elements are equal to zero since not all type at infection individuals infect others. For
example, human beings and rodent infected with bubonic and pneumonic do not cause new
cases of infected human beings and rodent with bubonic plague, this means that k11, k12, k13

and k14 are equal to zero. There are no new cases of human beings infected with pneumonic
plague caused by rodent infected with pneumonic plague and from the infected �eas, thus k23

and k25 are equal to zero. Human and rodent infected with bubonic and pneumonic do not cause
new cases of infected rodent with bubonic plague, this means that k31, k32, k33 and k34 are equal
to zero.

Also no single case of rodent with pnemonic plague is caused by a human beings or rodent
infected with bubonic plague and from the infected �eas which again means k41, k43 and k45

are equal to zero. A �ea can neither infect itself nor by the environment and no new cases of
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the infected environment (pathogens in the environment) is caused by human beings and rodent
infected with bubonic plague, the infected �ea or by itself which means k55, k56, k61, k63, k65

and k66 are equal to zero. There are no new cases of human beings and rodent infected with
bubonic plague caused by infected environment (pathogens in the environment), and also no
disease transmission from human beings and rodent with pneumonic plague to �ea. This means
k16, k36, k52 and k54 are equal to zero (McCray, 2006; Heroven and Dersch, 2014).

Now replacing in matrix K the kij elements with value zero, the matrix K becomes

K =

0

BBBBBBBBBB@

0 0 0 0 k15 0
k21 k22 0 k24 0 k26

0 0 0 0 k35 0
0 k42 k43 k44 0 k46

k51 0 k53 0 0 0
0 k62 0 k64 0 0

1

CCCCCCCCCCA

(10)

The expected number of new cases of i caused by one infectious individual of j generally
depends on the infectious period of individual of type j, the progression rate from one infective
class to another within the individual type j, the probability that the individual of type j survives
the incubation and the adequate contact rate: individual type j to individual type i depending on
the particular type of infected individual j under consideration. For example, k15 depends on the
infectious period of �ea, probability that �eas survives the incubation period and the adequate
contact rate: infected �ea to human being. Using the method outlined by Gail and Benichou
(2000), we now derive the expressions for kij basing on the adequate contact rate between
the infected individual type j and the susceptible individual type i, the expected duration of
infection of individual type j and the probability that the individual type j survive the duration
between the latent stage to the time an individual experience the onset clinical disease as in (11)

Kij =

0

BB@

Effective
contact

Rate

1

CCA�

0

BB@

Duration
of

infection

1

CCA�

0

BB@

Probability that the
individual survive

the incubation period

1

CCA (11)
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we then have:
k15 =

�
�

� + �2

�
�fh

�2 + �2

k26 =
!1�4

�4(�4 + �4)

k22 =
(1� �1)�2�hh

((1� �1)�2 + �1)(�1 + �1 + �4)

k24 =
(1� �2)2�rh

((1� �2)2 + �3)(�3 + �3)

k21 =
�

�1�2

�1�2 + �1

�
��3

�1 + �1 + �3

k46 =
!2�4

�4(�4 + �4)

k35 =
�

�
� + �2

�
�fr

�2 + �2

k44 =
(1� �2)2�rr

((1� �2)2 + �3)(�3 + �3)

k43 =
�

�22

�22 + �3

�
3

3 + �3 + �2

k42 =
(1� �1)�2�hr

((1� �1)�2 + �1)(�1 + �1 + �4)

k53 =
�

�22

�22 + �3

�
�3�rf

3 + �3 + �2

k51 =
�

�1�2

�1�2 + �1

�
�1�hf

�1 + �1 + �3

k62 =
�

(1� �1)�2

(1� �1)�2 + �1
+

��3

��3 + �1 + �1

�
�1

�1 + �1 + �4

k64 =
�

(1� �2)2

(1� �2)2 + �3
+

3

3 + �3 + �2

�
�2

�3 + �3

Each element of the matrix K is the reproduction number for pairs of considered types
(Hartemink et al., 2008). The general interpretation of the matrix elements kij is that; the
elements k11,k12, k21, k22 and k33, k34, k43, k44 arise within human beings and rodents respec-
tively as there are two groups of infectious classes which are those with bubonic plague IHA and
IRA and those with pneumonic plague IHB and IRB. These two groups differ in the way they
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transmit Yersinia pestis. The bubonic plague infectious cases occur when bacteria infect the
lymphatic system and it is mainly transmitted through �ea bite. In very rare cases the disease
may be transmitted through the interaction with the environment, and in almost negligible cases
the disease can be transmitted between human - human, human - rodent and rodent - rodent.
These are the reasons why the value of k11, k12, k13, k14 and k16 are zero. While the group of
human beings and rodents infected with pneumonic plague occur when the bacteria infect the
lungs, it is transmitted through airborne transmission.

Basic Reproduction Number R0

Diekmann et al. (1990) and Heesterbeek (2000) postulates that we obtain the basic reproduction
number R0 by computing the maximum modulus of the eigenvalues of the next-generation
matrix. Using mapple computing software package, the basic reproduction number is

R0 =
1
6
�
�1 +

p
�2 � �3

� 1
3 +

�4

(�1 +
p
�2 � �3)

1
3

+
1
3

(k44 + k22)

for
�2 � �3 > 0

where

�1 = 8k3
22 � 12k44k2

22 + (36k62k26 � 72k64k46 + 36k42k24 � 12k2
44)k22 + 8k3

44 + (36k64k46

�72k62k26 + 36k42k24)k44 + 108k64k42k26 + 108k62k24k46

�2 = (6k44
3 + (6k42k24 + 24k64k46)k44 + 12 k64k42k26 + 12 k62k24k46)k22

3

+24 k64
2k46

2k22
2 + ((6 k42k24 + 24 k62k26)k44

3 + (30 k42
2k24

2 + 6 k42(k62k26

+k64k46)k24 + 114 k64k46k62k26)k44 + 54 (k62k26 + k42k24)(k64k42k26

+k62k24k46))k22 + (12 k64k42k26 + 12 k62k24k46)k44
3 + 24 k62

2k26
2k44

2

+54 (k42k24 + k64k46)(k64k42k26 + k62k24k46)k44 + 81 k62
2k24

2k46
2

+90 k64k46k62k24k42k26 + 81 k64
2k42

2k26
2

�3 = (�3 k44
2 � 12 k64k46)k22

4 � 6 k62k22
3k26k44 + (�3 k44

4 + (�6 k64k46 � 24 k42k24

�6 k62k26)k44
2 + (�18 k62k24k46 � 18 k64k42k26)k44 � 3 (k62k26 + k42k24)(k42k24

+20 k64k46 + k62k26))k22
2 + (�6 k64k44

3k46 + (�18 k62k24k46 � 18 k64k42k26)k44
2

+(�24 k62
2k26

2 � 24 k64
2k46

2)k44 � 108 k64k46(k64k42k26 + k62k24k46))k22

�12 k62k26k44
4 � 3 (k42k24 + k64k46)(k42k24 + 20 k62k26 + k64k46)k44

2

�108 k26k62(k64k42k26 + k62k24k46)k44 � 12 k62
3k26

3 � 36 k62
2(k42k24

+k64k46)k26
2 � 36 k62(k42

2k24
2 + k64

2k46
2)k26 � 12 (k42k24 + k64k46)3

�4 = 2k64k46 + 2k62k26 + 2k42k24 + 2
3k

2
44 + 2

3k
2
22 � 2

3k44k22

Since pneumonic plague has multiple transmission cycles, the next-generation matrix method
gives the geometric mean of the number of infections per generation (Li and Blakeley, 2011).
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It depends on the expected number of new cases of human beings infected with pneumonic
plague caused by one infected human beings with pneumonic plague (k22), the expected number
of new cases of human beings infected with pneumonic plague caused by one infected rodent
with pneumonic plague (k24), the expected number of new cases of human beings infected
with pneumonic plague caused by infected environment (k26), the expected number of new
cases of rodent infected with pneumonic plague caused by one infected human beings with
pneumonic plague (k42), the expected number of new cases of rodent infected with pneumonic
plague caused by one infected rodent with pneumonic plague (k44), the expected number of
new cases of rodent infected with pneumonic plague caused by infected environment (k46), the
expected number of new cases of infected environment caused by one infected human beings
with pneumonic plague (k62) and the expected number of new cases of infected environment
caused by one infected rodent with pneumonic plague (k64).

4.4.3 Local stability of the Disease Free Equilibrium point

In this section, we assess the local stability of the Disease Free Equilibrium (DFE) point of the
pneumonic plague disease system, in which we prove that the trajectories start arbitrary close to
the equilibrium point but do not precisely reach it. We do this by evaluating the Jacobian matrix
of system (1) - (4) at DFE point:
Then we have

J(E0) =

 
J11 J12

J21 J22

!

(12)

where J11, J12, J21 and J22 are (6� 6) matrices given by;

J11 =

0

BBBBBBBBBB@

��1 0 0 ��1�hhSH
N1

$ 0
0 �(�2 + �1) 0 �1�hhSH

N1
0 0

0 �1�2 �(�3 + �1 + �1) 0 0 0
0 (1� �1)�2 ��3 �(�4 + �1 + �1) 0 0
0 0 (1� �)�3 �4 �($ + �1) 0
0 0 0 �1�hrSR

N1
0 ��3

1

CCCCCCCCCCA

(13)
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J21 =

0

BBBBBBBBBB@

0 0 0 1�hrSR
N1

0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 ���1�hfSF

N1

���2�hfSF
N1

0 0
0 0 ��1�hfSF

N1

��2�hfSF
N1

0 0
0 0 0 �1

N1
0 0

1

CCCCCCCCCCA

(14)

J12 =

0

BBBBBBBBBB@

0 0 ��1�rhSH
N3

0 ��1�fhSH
N2

��1!1SH
0 0 �1�rhSH

N3
0 �1�fhSH

N2
�1!1SH

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 �1�rrSR

N3
0 �1�frSR

N2
�1!2SR

1

CCCCCCCCCCA

(15)

J22 =

0

BBBBBBBBBB@

�(2 + �3) 0 1�rrSR
N3

0 1�frSR
N2

1!2SR
�22 �(3 + �3�2) 0 0 0 0

(1� �2)2 3 �(�3 + �3) 0 0 0
0 ���3�rfSF

N3

���4�rfSF
N3

��2 0 0
0 ��3�rfSF

N3

��4�rfSF
N3

0 �(�2 + �2) 0
0 0 �2

N3
0 0 ��4

1

CCCCCCCCCCA

(16)

From the combined matrix J(E0), the diagonal entries from the �rst, �fth, sixth and tenth
column makes the four eigenvalues of the matrix (12). These are ��1, �($ + �1), ��3 and
��2, now canceling their corresponding rows and columns we modify (12) and remain with
an (8 � 8) matrix with the modi�ed J11, J12, J21 and J22 as given in (17), (18), (19) and (20)
respectively;

J11 =

0

BB@

�(�2 + �1) 0 �1�hhSH
N1

�1�2 �(�3 + �1 + �1) 0
(1� �1)�2 ��3 �(�4 + �1 + �1)

1

CCA (17)
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J21 =

0

BBBBBBB@

0 0 1�hrSR
N1

0 0 0
0 0 0
0 ��1�hfSF

N1

��2�hfSF
N1

0 0 �1
N1

1

CCCCCCCA

(18)

J12 =

0

BB@

0 0 �1�rhSH
N3

�1�fhSH
N2

�1!1SH
0 0 0 0 0
0 0 0 0 0

1

CCA (19)

J22 =

0

BBBBBBB@

�(2 + �3) 0 1�rrSR
N3

1�frSR
N2

1!2SR
�22 �(3 + �3�2) 0 0 0

(1� �2)2 3 �(�3 + �3) 0 0
0 ��3�rfSF

N3

��4�rfSF
N3

�(�2 + �2) 0
0 0 �2

N3
0 ��4

1

CCCCCCCA

(20)

Making further computation we �nd the other negative eigenvalues of the matrix 12 as ��4,
�(�2 + �2), �(�3 + �3), �(3 + �3 + �2) and �(2 + �2). Also there are complex eigenvalues
with very long expressions and negative real part, we name them as �p1 + q1i and �p2 + q2i
where p1; p2 and q1; q2 are real and imaginary part respectively. The computation show that the
last eigenvalue is negative if and only if R0 < 1. By Morand et al. (2011) these results prove
that the equilibrium point E0 is locally asymptotically stable. It then leads to Theorem 4.8.

Theorem 4.8
The Disease Free Equilibrium E0 of pneumonic plague is locally asymptotically stable if R0 <
1and unstable if R0 > 1.

4.4.4 Global stability of the disease-free equilibrium point

We employ the Metzler matrix method as described by Castillo-Chavez et al. (2002). We
divide the general pneumonic plague system (1) - (4) into transmitting and non-transmitting
components as stated below.
Let Yn be the vector for non-transmitting compartments, Yi be the vector for transmitting
compartments and YE0;n be the vector of disease free point.
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8
>>>><

>>>>:

dYn
dt

= A1(Yn � YE0;n) + A2Yi

dYi
dt

= A3Yi

(21)

We will then have

Yn = (SH ; RH ; SR; SF )T Yi = (EH ; IHA; IHB; ER; IRA; IRB; IF ; A)

YE0;n = (
 1

�1
; 0;

 3

�3
;
 2s

�2
)

Yn �YE0 ;n =

0

BBBB@

SH �  1
�1

RH

SR �  3
�3

SF �  2s
�2

1

CCCCA

In order to prove that the DFE point is globally and asymptotically stable, we are required to
show that Matrix A1 has real negative eigenvalues and A3 is a Metzler matrix in which all off
diagonal element must be non-negative. Referring to (29) we write the general model as given
below;

0

BBBB@

 1 +$RH � �1kSH � �1SH ;
�4IHB + (1� �)�3IHA �$RH � �1RH ;

 3 � 1MSR � �3SR
 2s � �Y SF � �2SF

1

CCCCA
= A1

0

BBBB@

SH �  1
�1

RH

SR �  3
�3

SF �  2s
�2

1

CCCCA
+ A2

0

BBBBBBBBBBBBBBB@

EH
IHA
IHB
ER
IRA
IRB
IF
A

1

CCCCCCCCCCCCCCCA

and 0

BBBBBBBBBBBBBBBB@

�1kSH � (�2 + �1)EH ;
�1�2EH � ��3IHA � (1� �)�3IHA � (�1 + �1)IHA;
(1� �1)�2EH + ��3IHA � �4IHB � (�1 + �1)IHB;

1MSR � (2 + �3)ER;
�22ER � 3IRA � (�3 + �2)IRA;

(1� �2)2ER + 3IRA � (�3 + �3)IRB;
�Y SF � (�2 + �2)IF ;

�4 + �1
IHB
N1

+ �2
IRB
N3
� �4A

1

CCCCCCCCCCCCCCCCA

= A3

0

BBBBBBBBBBBBBBB@

EH
IHA
IHB
ER
IRA
IRB
IF
A

1

CCCCCCCCCCCCCCCA
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For

k =(�hh
IHB
N1

+ �fh
IF
N2

+ �rh
IRB
N3

+ !1A)

M =(�rr
IRB
N3

+ �fr
IF
N2

+ �hr
IHB
N1

+ !2A)

Y =(�hf
�1IHA + �2IHB

N1
+ �rf

�3IRA + �4IRB
N3

)

Now using the transmitting and non-transmitting element, we will have the matrices A1, A2 and
A3 as below:

A1 =

0

BBBB@

��1 $ 0 0
0 �($ + �1) 0 0
0 0 ��3 0
0 0 0 ��2

1

CCCCA
(22)

A2 =

0

BBBB@

0 0 ��1�hhS0
H

N1
0 0 ��1�rhS0

H
N3

��1�fhS0
H

N2
��1!1S0

H

0 (1� �)�3 �4 0 0 0 0 0
0 0 �1�hrS0

R
N1

0 0 �1�rrS0
R

N3

�1�frS0
R

N2
�1!2S0

R

0 ���1�hfS0
F

N1

���2�hfS0
F

N1
0 ���3�rfS0

F
N3

���4�rfS0
F

N3
0 0

1

CCCCA
(23)

A3 =

0

BBBBBBBBBBBBBBB@

�n1 0 �1�hhS0
H

N1
0 0 �1�rhS0

H
N3

�1�fhS0
H

N2
�1!1SH

�1�2 �n2 0 0 0 0 0 0
n8 ��3 �n3 0 0 0 0 0
0 0 1�hrS0

R
N1

�n4 0 1�rrS0
R

N3

1�frS0
R

N2
1!2S0

R

0 0 0 �22 �n5 0 0 0
0 0 0 (1� �2)2 3 �n6 0 0
0 n9

��2�hfS0
F

N1
0 ��3�rfS0

F
N3

��4�rfS0
F

N3
�n7 0

0 0 0 0 0 0 0 ��4

1

CCCCCCCCCCCCCCCA

(24)

where
n1 = (�2 + �1) n2 = (�3 + �1 + �1) n3 = (�4 + �1 + �1)
n4 = (2 + �3) n5 = (3 + �3 + �2) n6 = (�3 + �3)
n7 = (�2 + �2) n8 = (1� �1)�2 n9 = ��1�hfS0

F
N1

S0
H =  1

�1
S0
R =  3

�3
S0
F =  2s

�2

Computing the eigenvalues of matrix A1, we �nd that the eigenvalues are ��1, ��2, ��3 and
�($ + �1). The result now con�rms that the system

dYn
dt

= A1(Yn � YE0;n) + A2Yi
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is globally and asymptotically stable at YE0 . Also we �nd that all its off-diagonal elements of
the matrix A3 are non-negative and thus A3 is a Metzler stable matrix. Therefore Disease Free
Equilibrium point for pneumonic plague system is globally asymptotically stable and as a result
we have the following theorem:

Theorem 4.9
The disease-free equilibrium point is globally asymptotically stable inE0 ifR0 < 1and unstable
if R0 > 1.

4.4.5 Existence of Endemic Equilibrium

Now, we investigate conditions for existence of the endemic equilibrium points of pneumonic
plague disease. The equilibrium point E�(S�H ; E�H ; I�HA; I�HB; R�H ; S�R; E�R; I�RA, I�RB, S�F , I�F ,
A�) is obtained by solving the equations obtained by setting the derivatives of (1)-(4) equal to
zero.

If we let ��H , ��R, ��F and ��A be the force of infection for human beings, rodents, �eas and the
environment respectively as given in (25) - (28).

��H = �hh
I�HB
N�1

+ �fh
I�F
N�2

+ �rh
I�RB
N�3

+ !1A� (25)

��R = �rr
I�RB
N�3

+ �fr
I�F
N�2

+ �hr
I�HB
N�1

+ !2A� (26)

��R = �hf�
I�HA
N�1

+ �rf (1� �)
I�RA
N�3

(27)

��A = �4 + �1
I�HB
N�1

+ �2
I�RB
N�3

(28)

It is clear that ��H is an increasing function of IHB, IRB, IF and A. When the the force of infec-
tion is high, the rate at which human beings progress from susceptible to exposed will increase,
thus the number of human beings becoming exposed to the disease will as well increase. The
increase of number of exposed human beings will lead to the increases of the number of human
beings progressing and become bubonic or pneumonic plague infectives. However when the
force of infection is low, the rate at which human beings progress from susceptible to exposed
decreases and consequently it decreases the infection rate. That is to say if we assume that when
the force of infection is high then IHB = IHB1, IRB = IRB1, IF = IF1 and A = A1 and when
the force of infection is low then IHB = IHB2, IRB = IRB2, IF = IF2 and A = A1, since ��H is
an increasing function then ��H(IHB1; IRB1; IF1; A1) > ��H(IHB2; IRB2; IF2; A2).

If the force of infection for human being is assumed to be very high, that is ��H !1, gradually
the susceptible human will approach zero SH � 0 and recovered human beings will approach a
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non-zero endemic point. Moreover the number of exposed human beings (EH), human beings
infected with bubonic plague (IHA) and human beings infected with pneumonic plague (IHB)
will rise approaching a non-zero endemic point E�H , I�HA and I�HB.

The force of infection in rodent ��R is an increasing function of IRB, IHB, IF and A. As we
increase the force of infection for rodent, that is ��R !1, gradually the number of susceptible
rodents will approach zero SR � 0. As the progression rate of the susceptible rodent to infected
increases, the rodent exposed to the diseaseER, the number rodent infected with bubonic plague
IRA and the number of rodent infected with pneumonic plague IRB will rise and approach a
non-negative endemic point, E�R, I�RA and I�RB.

The force of infection in �ea (��F ) is an increasing function of IRA and IHA. Now assuming the
enormous increasing force of infection for �ea, that is as ��F ! 1, the number of susceptible
�eas, SF , will gradually approach zero. As the rate at which a �ea gets infection increases, IF
will approach non-zero endemic level I�F .

Force of infection in the environment in our case is an overall rate at which pathogens are
populated in the environment. ��A is the increasing function of IHB and IRB. Now if we assume
the mammoth increase of the force of infection to the environment, that is as ��A !1 will lead
to the proportional increase the the number of pathogens shad in the environment.

Using the study by De La Sen et al. (2011), we study the existence of endemic equilibrium
through numerical simulation. We choose the values of the parameter that constitute the basic
reproduction number in such a way that R0 > 1 , in our case we have R0 = 76 .

(a) (b)

Figure 24: The solution trajectories showing the endemic equilibrium point.

In order to examine the existence of endemic equilibrium point we show that the exposed,
infected and recovered classes in human beings, rodents and �eas and the number of pathogens
in the environment are different from zero. Figure 24b is the zoomed view of Fig. 24a which
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shows that; the susceptible population in human being, rodent and �ea approaches zero while
on the other hand the exposed, infected and the recovery classes in human being, rodent �ea
and the pathogens in environment reaches maximum and then converging to non-zero endemic
equilibrium point.

We then derive the conditions under which the endemic equilibrium points are stable or unsta-
ble. That is, we show whether the solution starting suf�ciently close to the equilibrium remains
close to the equilibrium and approaches the equilibrium as t ! 1 , or if there are solutions
starting arbitrary close to the equilibrium which do not approach it respectively.

4.4.6 Global stability of Endemic equilibrium point

Van den Driessche and Watmough (2002) postulate that the local stability of the Disease Free
Equilibrium advocates for local stability of the Endemic Equilibrium for the reverse condition.
We therefore focus on �nding the global stability of Endemic equilibrium. We use Korobeinikov
approach in which we formulate a suitable Lyapunov function for pneumonic plague model
(Van den Driessche and Watmough, 2002; Korobeinikov, 2004, 2007).
The Lyapunov function is as given in the form below;

V =
X

ai(yi � y�i ln yi)

where ai is de�ned as a properly selected positive constant, yi de�nes the population of the ith

compartment, and y�i is the equilibrium point.
We will have the following Lyapunov function:

V = W1(SH � S�H lnSH) +W2(EH � E�H lnEH) +W3(IHA � I�HA ln IHA) +W4(IHB
�I�HB ln IHB) +W5(RH �R�H lnRH) +W6(SR � S�R lnSR) +W7(ER � E�R lnER)
+W8(IRA � I�RA ln IRA) +W9(IRB � I�RB ln IRB) +W10(SF � S�F lnSF )
+W11(IF � I�F ln IF ) +W12(A� A� lnA)

The constants Wi are non-negative in � for i = 1; 2; 3:::12. The function V together with its
constants W1;W2:::W12 are chosen such that V is continuous and differentiable in �.

We compute the time derivative of V to get;

dV
dt = W1(1� S�H

SH
)dSHdt +W2(1� E�H

EH
)dEHdt +W3(1� I�HA

IHA
)dIHAdt +W4(1� I�HB

IHB
)dIHBdt

+W5(1� R�H
RH

)dRHdt +W6(1� S�R
SR

)dSRdt +W7(1� E�R
ER

)dERdt +W8(1� I�RA
IRA

)dIRAdt
+W9(1� I�RB

IRB
)dIRBdt +W10(1� S�F

SF
)dSFdt +W11(1� I�F

IF
)dIFdt

+W12(1� A�
A )dAdt
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Using system (1) - (4) we will have

dV
dt = W1(1� S�H

SH
)[ 1 +$RH � �1(�hh IHBN1

+ �fh IFN2
+ �rh IRBN3

+ !1A)SH � �1SH ; ]
+W2(1� E�H

EH
)[�1(�hh IHBN1

+ �fh IFN2
+ �rh IRBN3

+ !1A)SH � (�2 + �1)EH ]
+W3(1� I�HA

IHA
)[�1�2EH � ��3IHA � (1� �)�3IHA � (�1 + �1)IHA]

+W4(1� I�HB
IHB

)[(1� �1)�2EH + ��3IHA � �4IHB � (�1 + �1)IHB]
+W5(1� R�H

RH
)[�4IHB + (1� �)�3IHA �$RH � �1RH ]

+W6(1� S�R
SR

)[ 3 � 1(�rr IRBN3
+ �fr IFN2

+ �hr IHBN1
+ !2A)SR � �3SR]

+W7(1� E�R
ER

)[1(�rr IRBN3
+ �fr IFN2

+ �hr IHBN1
+ !2A)SR � (2 + �3)ER]

+W8(1� I�RA
IRA

)[�22ER � 3IRA � (�3 + �2)IRA]
+W9(1� I�RB

IRB
)[(1� �2)2ER + 3IRA � (�3 + �3)IRB]

+W10(1� S�F
SF

)[ 2s � �(�hf �1IHA+�2IHB
N1

+ �rf �3IRA+�4IRB
N3

)SF � �2SF ]
+W11(1� I�F

IF
)[�(�hf �1IHA+�2IHB

N1
+ �rf �3IRA+�4IRB

N3
)SF � (�2 + �2)IF ]

+W12(1� A�
A )[�4 + �1

IHB
N1

+ �2
IRB
N3
� �4A]

Using system (1) - (4) at endemic equilibrium we derive the following;

dV
dt = �W1(1� S�H

SH
)2 �W2(1� E�H

EH
)2 �W3(1� I�HA

IHA
)2 �W4(1� I�HB

IHB
)2

�W5(1� R�H
RH

)2 �W6(1� S�R
SR

)2 �W7(1� E�R
ER

)2 �W8(1� I�RA
IRA

)2

�W9(1� I�RB
IRB

)2 �W10(1� S�F
SF

)2 �W11(1� I�F
IF

)2

�W12(1� A�
A )2 + F (SH ; EH ; IHA; IHB; RH ; SR; ER; IRA; IRB; SF ; IF ; A)

where the function F (SH ; EH ; IHA; IHB; RH ; SR; ER; IRA; IRB; SF ; IF ; A) is non-positive,
Now following the procedures by McCluskey (2006) and Korobeinikov and Wake (2002). We
take that

F (SH ; EH ; IHA; IHB; RH ; SR; ER; IRA; IRB; SF ; IF ; A) � 0

for all values of
SH ; EH ; IHA; IHB; RH ; SR; ER; IRA; IRB; SF ; IF ; A:

Then dV
dt � 0 for all values of SH ; EH ; IHA; IHB; RH ; SR; ER; IRA; IRB; SF ; IF ; A and it is

zero when SH = S�H ; EH = E�H ; IHA = I�HA; IHB = I�HB; RH = R�H ; SR = S�R; ER =
E�R; IRA = I�RA; IRB = I�RB; SF = S�F ; IF = I�F ; A = A�. Hence the largest compact invariant
set in SH ; EH ; IHA; IHB; RH ; SR; ER; IRA; IRB; SF ; IF ; A such that dVdt = 0 is the singleton E�

which is the Endemic Equilibrium point of the pneumonic plague system (1) - (4). Now using
LaSalles’s invariant principle by La Salle (1976), it implies that E� is globally asymptotically
stable in the interior of the region of SH , EH , IHA, IHB, RH , SR, ER, IRA, IRB, SF , IF , A and
thus leads to the theorem below:

Theorem 4.10
If R0 > 1 then the model system (1) - (4) of pneumonic plague has a unique endemic equilib-
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rium point E� which is globally asymptotically stable in SH , EH , IHA, IHB, RH , SR, ER, IRA,
IRB, SF , IF , A.

4.5 Sensitivity and Elasticity analysis and Numerical Simulation

In this section, we determine the behavior and strength of model predictions with respect to
parameter values. We use sensitivity and elasticity analysis to determine the impact of kij on
the basic reproduction number R0 in order to set the required control strategies for pneumonic
plague.

4.5.1 Parameter Estimation

The parameters are taken from the literature that relate to this study, the present information on
pneumonic plague and through estimation using sensitivity analysis and simulations. Table 9
shows the values of the parameters as used in the model.

Table 9: Parameter values for pneumonic plague disease

Parameters Value/Range Reference/Source

�rf 0.6 Ngeleja et al. (2016)
�fh 0.09 Benkirane et al. (2009)
�fr 4.7 Li (1993)
� 0.7 Estimated
�1 0.9 Ngeleja et al. (2016)
�4 0.006 Estimated
1 0.9 Ngeleja et al. (2016)
�hf 0.28 Benkirane et al. (2009)
�4 0.89 Ngeleja et al. (2016)
�2 0.95 Estimated
2 0.91 Estimated
�3 0.6 estimated
$ 0.1 Keeling and Gilligan (2000a)
�1 0.04 Keeling and Gilligan (2000a)
�1 0.37 Estimated
�1 0.04 Keeling and Gilligan (2000a)
�2 0.89 Estimated

Continued on next page
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Table 9 � Continued from previous page

Parameters Value/Range Reference/Source

�3 0.05 Keeling and Gilligan (2000b)
�3 0.2 Galtier and Mouchiroud (1998)
!1 0.8 Estimated
!2 0.04 Estimated
�4 0.1 Ngeleja et al. (2016)
�2 0.07 Benkirane et al. (2009)
�1 0.6 Estimated
�2 0.4 Estimated
�2 0.03 Benkirane et al. (2009)
3 0.015 Estimated
 1 0.09 Ngeleja et al. (2016)
 2S 0.008 Keeling and Gilligan (2000b)
 3 0.03 Keeling and Gilligan (2000a)
� 0.99 Ngeleja et al. (2016)
�hh 0.019 Estimated
�rr 0.029 Estimated
�hr 0.005 Estimated
�rh 0.09 Estimated

Figure 25a, Fig. 25b, Fig. 25c and Fig. 25d show the dynamics of the disease in human
beings, rodents, �eas and pathogens in the environment respectively. In human beings, we see
that the the exposed EH , bubonic and pneumonic plague infectious IHA and IHB, and recovery
RH classes slightly increase before it settle at its equilibrium points. The susceptible class SH
experience a fast decrease within the �rst year and then it gradually decrease to its endemic
point. In rodent population, all compartments SR, ER , IRA and IRB show a marginal increase
before they all attain the endemic equilibrium point. The compartment in �eas and pathogens
in the environment also experience the marginal increase before they reach the endemic point.

Bubonic plague serves as the primary stage of pneumonic plague in this study, it is mainly
transferred when the infected �ea bites the susceptible human being or rodent. The fraction of
human being and rodent infected with bubonic plague if not treated may progress and become
the pneumonic plague infectives. This means that the increase of the number of human beings
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(a) (b)

(c) (d)

Figure 25: The dynamics of human beings, rodents, �eas and pathogens in the environment with

baseline parameter values given in Table 9.

and rodents with bubonic plague will also increase the number of human beings and rodents
with pneumonic plague (Felek et al., 2010). Figure 26 shows the in�uence of number of infec-
tious individuals due to the increased number of infected �ea to the human beings and rodents
infected with bubonic plague. Figure 27 shows the in�uence of number of infectious individ-
uals due to human beings and rodents infected with bubonic plague to the human beings and
rodents with pneumonic plague. This output is because the increase of the number of individual
with bubonic plague consequently increases the progression rate of individuals (human being
and rodent) with Bubonic Plague to individuals with Pneumonic Plague.

Figure 26 shows that when the number of infected �ea increases the number of human beings
and rodents infected with Bubonic plague also increase. It implies that the increased number
of infected �eas will increase the probability of a human being or a rodent to be bitten by the
infected �ea. As a result it increases the number of human beings and rodents infected with
Bubonic plague.
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(a) (b)

Figure 26: The effect of increased infected �eas on the number of human beings and rodents with

Bubonic Plague

(a) (b)

Figure 27: The effect of increased number of human beings and rodents with Bubonic Plague on the

number of human beings and rodents with Pneumonic Plague
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(a) (b)

Figure 28: The effect of increased number pathogens in the environment on the number of human

beings and rodents with Pneumonic Plague

The environment infested with pathogens also plays a great role in transmitting the pneumonic
plague bacteria to the human being or rodent populations. The bacteria may be transmitted
through airborne transmission (droplet contact). When a human being or rodent with pneumonic
plague coughs or sneezes the bacteria are moved to the environment and upon adequate contact
it may lead to infection to human beings or rodents (Prentice and Rahalison, 2007).

Figure 28 shows the in�uence of pathogens in the environment to the number of human beings
and rodents with pneumonic plague. The �gure portrays that the increase in the number of
pathogens in the environment proportionally increases the number of human beings and rodents
with Pneumonic Plague, this is due to the fact that the increase the pathogens in the environment
will also increase the rate/probability that air that one (human being or rodents) breathes in
contain yersinia pestis which may leads to infection.

Environment also is greatly affected when the number of human and rodent with Pneumonic
Plague is increased (Himsworth et al., 2013). In Fig 29, we see that as the number of human
and rodent with pneumonic plague increases the pathogens in the environment increase as well.
This result is realistic due to the fact that human and rodent infected with Pneumonic Plague do
release yersinia pestis bacteria into the environment through coughing or sneezing (Orloski and
Lathrop, 2003).

4.5.2 Sensitivity and Elasticity analysis of R0

In this section, we determine the effect of parameters in the variation of the basic reproduction
number using sensitivity analysis. We also perform the elasticity analysis to quantify the relative
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(a) (b)

Figure 29: The effect of increased number of human beings and rodents with Pneumonic Plague on the

number of pathogens in the environment

change in R0 in response to the change in a parameter. Hartemink (2009) analyzed the steps
to study the sensitivity and elasticity of the basic reproduction number R0 to the changes in
elements kij or to the parameters that describe them. We employ the steps in our model as
given below.

Sensitivity

The sensitivity sij of a matrix K is de�ned as the change in the basic reproduction number
(R0) which is the the maximum modulus of the eigenvalues of the matrix K due to change in
elements kij given by

sij =
@R0

@kij
: (29)

The values sij form a sensitivity matrix Sij which is computed from the left and right eigenvec-
tors of the next generation matrix corresponding to its dominant eigenvalue (Caswell, 2001).

For individual parameters the sensitivity s(�) is given by

s(�) =
X

ij

@R0

@kij
@kij
@�

: (30)
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Elasticity

Elasticity is de�ned as the proportional change in R0 due to a proportional change in the matrix
element. Now the elasticity eij of a matrix element kij is de�ned as

eij =
kij
R0

@R0

@kij
: (31)

For individual parameters the elasticity e(�) is given by

e(�) =
�
R0

X

ij

@R0

@kij
@kij
@�

: (32)

Table 10 shows the sensitivity and elasticity of the basic reproduction number R0 for the given
parameter values. From the table we see that R0 is most sensitive to expected number of new
cases of the contaminated environment caused by one rodent infected with pneumonic plague
k64. R0 is also sensitive to other ksij like the the expected number of new cases of rodent in-
fected with pneumonic plague caused by one infected rodent with pneumonic plague (k44), the
expected number of new cases of contaminated environment caused by one infected human be-
ings with pneumonic plague (k62), the expected number of new cases of human beings infected
with pneumonic plague caused by one infected rodent with pneumonic plague (k24), the ex-
pected number of new cases of rodent infected with pneumonic plague caused by one infected
human beings with pneumonic plague (k42) and the expected number of new cases of rodent
infected with pneumonic plague caused by contaminated environment (k46). The basic repro-
duction number (R0) is least sensitive to (k26) which is the expected number of new cases of
human beings infected with pneumonic plague caused by infected environment. From Table
10, we also see that R0 is more elastic to the expected number of new cases of infected environ-
ment caused by one infected rodent with pneumonic plague (k64). It is also least elastic to the
expected number of new cases of human beings infected with pneumonic plague caused by one
infected human beings with pneumonic plague (k22).

From the Table 10 it can be seen that the sensitivity of all kijs are positive. The positive sign
implies that increasing (decreasing) any kij will consequently increase (decrease) the basic
reproduction number. For example, the sensitivity of k64 = 0:408 implies that increasing the
expected number of new cases of infected environment caused by one infected rodent with
pneumonic plague by 10% will increase the value of the basic reproduction number by 4%.
Figure 30, shows the effect of k22, k24, k26, k42, k44, k46, k62 and k64 on the basic reproduction
number .

The marginal increase of each kij brings about a signi�cant increase in the basic reproduction
number, which means that to effectively control the disease an effort should be made to reduce
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 30: The Effect of kij on the Basic Reproduction Number

99



Table 10: Sensitivity and elasticity of R0 for pneumonic plague.

Variable Sensitivity Index Elasticity

k22 0.2818959031 0.031
k24 0.3345433940 0.038
k26 0.2748857038 0.214
k42 0.3226507761 0.138
k44 0.3829097350 0.123
k46 0.3146270825 0.121
k62 0.3437425664 0.113
k64 0.4079406747 0.222

the magnitude of each kij . We then need to reduce expected number of new cases of human
beings infected with pneumonic plague caused by one infected human beings with pneumonic
plague k22.

This may be done through reducing the probability that human being survive the incubation
period, human’s incubation period, and adequate contact rate between people infected with
pneumonic plague. k24 may be reduced through reducing adequate contact rate between ro-
dent infected with Pneumonic Plague to human being, The probability that a rodent infected
with pneumonic plague survives the incubation period and the infectious period of rodent with
pneumonic plague, k26 may be reduced by reducing the period that the environment remains
contaminated with pathogens causing the disease, The probability that the environment survive
the period taken by pathogens to reach the threshold necessary to infect the environment and
thus transmit pneumonic plague disease to human beings and Adequate contact rate: Pathogens
in the environment to human beings. We can reduce the value of k42 by reducing the probability
that human beings with Pneumonic Plague survive the incubation period, Infectious period of
human beings with pneumonic plague and the adequate contact rate between the human beings
infected with Pneumonic Plague and rodent. Reducing k44 may be by reducing the infectious
period of rodent infected with pneumonic plague, the adequate contact rate between the rodent
with pnemonic plague and a susceptible rodent and the probability that a rodent survives the
period between exposure and onset of symptoms of pneumonic plague. k46 can be controlled
by reducing the adequate contact rate from pathogens in the environment to rodent, the period
that the environment remain contaminated with pathogens causing the disease and the prob-
ability that pathogens survive the period to reach the threshold necessary to contaminate the
environment and thus transmit pneumonic plague disease to rodent. k62 may be reduced by
reducing the probability that a human beings with pneumonic plague and capable of transmit-
ting the pathogens to the environment survive the incubation period, the infectious period of a
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human being infected with pneumonic plague, and the shading rate of pathogens in the soil/en-
vironment from a human being infected with pneumonic plague and we can as well reduce k64

by reducing the probability that a rodent with pneumonic plague and capable of transmitting
the pathogens to the environment survive the incubation period, the infective period of a rodent
infected with pneumonic plague, and the shading rate of pathogens in the soil/environment from
a rodent infected with pneumonic plague.

4.6 Discussion

The magni�cent transmission capacity displayed in the numerical results, show that, Pneumonic
plague is very fatal and threaten the life of human beings, rodents (including the domestic
animals) and the �eas. The results demonstrate the vital role played by human beings and
rodents with bubonic plague as agents in the transmission and spread of the pneumonic plague
disease. It is a fact that if an individual (human being or rodent) with bubonic plague is not
treated, the probability of progressing and becoming the pneumonic plague infective is very
high (Lathem et al., 2007). Thus the result justi�es the reason why an infected �ea plays the
vital role in the transmission of pneumonic plague, for it is the main agent for bubonic plague
transmission to both human beings and rodents.

Pneumonic plague is on top of list of diseases that could be used as a bio-weapon (Oren, 2009).
The results in this study show a signi�cant relationship between the increase of the number of
human beings and rodents with pneumonic plague and the pathogens in the environment. This
implies that when the environment is favorable for the pathogens to spread the disease becoming
extremely dangerous with increased prevalence and deaths.

Results in Fig 30 show a positive relationship between the basic reproduction number and the
expected number of new cases of each pair kij . This means that as the number of new cases of i
caused by one infected individual j increases. It consequently increases the basic reproduction
number. Now since all individuals act as the potential agents for transmission of the disease,
this indicates to us that when the disease occur it will spread to a large community very fast.

The strategy that may have a great and positive impact on the control of pneumonic plague, is
the one that will reduce the effect of kij on the basic reproduction number. This may gener-
ally be done through the following strategies: one is reducing the individual’s infective period;
two is reducing the probability that the individual survives the incubation period, and three is
reducing the adequate contact rate between one infective agent and the other susceptible indi-
viduals. These three strategies will reduce the number of infections an individual can produce
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by reducing the values of kij and as a result reduce the value of the basic reproduction number.

4.7 Conclusion

A deterministic SEIR model with modi�cation was developed and analysed to study the dy-
namics of pneumonic plague. The analytical results show that the disease free equilibrium point
(DFE) and the endemic equilibrium point (EE) exist and were found to be locally and globally
asymptotically stable whenever they exist. In order to determine the number of infections an
individual can produce we computed the basic reproduction number using the next generation
Matrix method.

From this study it is clear, from the analytical results and simulations, that pneumonic plague
can be very dangerous to a point of being fatal. There must be plans that will effectively analyze
the control strategies of the disease when it occurs. With the support of the numerical analyses
in this study we recommend that any control strategy for pneumonic plague should concentrate
on reducing the effect of the expected number of new cases of each pair kij has to the basic
reproduction number.
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CHAPTER FIVE

Mathematical model for plague disease dynamics with Yersinia pestis in the environment 4

Abstract: In this chapter, we develop a deterministic model to study the dynamics of plague dis-
ease. The model considers three forms of plague disease which are bubonic plague, septicemic
plague and pneumonic plague. In the model we consider four populations: human beings,
rodents, �eas and pathogens in the environment. We determine conditions for extinction and
persistence of the disease using the basic reproduction number. We establish the conditions for
local and global stability of disease free and endemic equilibrium points. Sensitivity analysis
of the basic reproduction number is computed to determine the parameters to which the basic
reproduction number is most and least sensitive. We use numerical simulations to show the
dynamical behaviour of the model that brings out factors that in�uence the spread and transmis-
sion of plague disease. According to the results we point out the necessity of early treatment
in order to reduce the number of individuals that progress from one primary form of plague
disease to secondary forms. It is also recommended that proper measure be taken to reduce the
force of infection to human beings, rodent, �ea and to the environment

Keywords: Plague disease; sensitivity analysis; Yersinia pestis; endemic equilibrium; disease
free equilibrium; environmental transmission.

5.1 Introduction

Plague holds an extraordinary record in history and has brought about massive effects on the
development of modern civilization. It has affected different countries around the world on
continents such as Asia, Africa and Europe. At its early days the root of plague was unknown
so it led to massive deaths and panic of the people all around the world (Fraser et al., 2007).
Plague is very severe, frequently lethal and potentially epidemic re-imaging disease caused by
infection with the Gram negative bacterium called Yersinia pestis. It is primarily carried by wild
rodents (most notably rats) and spread to humans via �ea bites. It remains to be notorious and a
threat to human societies throughout history, due to the unrivaled scale of death and devastation
it brought over the history (Wagner et al., 2014).

Plague disease mainly occurs in three forms which are bubonic, septicemic and pneumonic
plague (Kugeler et al., 2015). The adequate contact between the �ea infested with pathogens

4This chapter is based on the manuscript: Mathematical model for plague disease dynamics with Yersinia pestis
in the environment.
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and the susceptible individual (through bite) results in primary bubonic plague or septicemic
plague. In very rare cases one may get bubonic plague infection through contact with contam-
inated �uid or tissue. Septicemic plague occurs when the bacteria infect blood streams. One
may be exposed to septicemic plague through physical contact (including sexual contact). An
example is when humans being without using proper precautions, handles tissue or body �u-
ids of an animal that is infected by plague during skinning infected animal. Animals like cats
may be infected by eating infected rats. The other and most severe form of plague is pneu-
monic Plague which is transmitted through infectious droplets. When a person with plague
pneumonia coughs, droplets containing the plague bacteria are deposited into air, and if these
bacteria-containing droplets are breathed in by another person they can cause pneumonic plague
infection (Butler, 2013; Prentice and Rahalison, 2007; Butler, 2012).

When the environmental conditions are favorable, Yersinia pestis may survive outside the host
and remain infectious for a over 24 hours as an aerosol. But when it is exposed to the sunlight
and heat outside of the living host it will quickly die after an hour (Eisen et al., 2008; Gengler
et al., 2015). In addition the study by Chenau et al. (2014) and McCauley et al. (2015) also
postulate that plague bacterium can survive for at least 24 days in contaminated soil under
natural conditions. This indicates that soil/environment may be used as an important agent in
the transmission and spread of plague disease especially in pneumonic form.

Plague disease does not only occur naturally, numerous countries have found ways to use
plague bacteria as a biological weapon. Substantial researches on the same have been con-
ducted by many countries mostly developed countries. Some countries were able to make an
actual weapon system that spread the plague bacteria (Yersinia pestis) directly, without the
need of a vector (e.g �eas). An example is that of the Japanese army who used plague as a
weapon against the Chinese in which the attacker dropped plague-infected �eas from an air-
plane (Szinicz, 2005). Due to its enormous potential of being used as a bio-weapon plague is
raising concern at the level of individual, community and national security as it can be used by
terrorists.

Yersinia pestis, can sustain their survival in a cycle that involve rodents (mostly wild rats) and
�eas. Other domestic animals like cat, dogs and goats may also support the survival of yersinia
pestis bacteria (Laudisoit et al., 2012). Plague may persist in a community for a very long
time through the enzootic cycle, in which plague bacteria circulate within some rodent and
other few domestic animals population at very low rate. The low circulation rate within these
populations makes them save as a long time reservoirs for bacteria. But in other cases plague
disease is epizootic, in which some animal species including human become infected, causing
an outbreak (Burt, 2006).
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Africa is among the continents that have been greatly affected by plague. The study by Neer-
inckx et al. (2010) narrates that most plague cases in human since the 1990s have occurred in
Africa. Almost all of the reported cases in the last 20 years have occurred among people and
communities in small towns and villages or agricultural areas. The number of plague cases
reported each year is still signi�cant although the true number may be higher as reported by
Neerinckx et al. (2010). Plague remains to be a public-health concern in the world but most
particularly in African countries where there is low economy and poor living conditions and
sanitation. Due to the seasonal distribution of yersinia pestis reservoirs which are mainly rats
and the vector �ea the occurrence of plague disease is also seasonal (Elschner et al., 2012).

Studies of plague disease particularly with mathematical approach have generally focused on
speci�c form of plague predominantly bubonic plague and very few of pneumonic and sep-
ticemic plague. But in order to understand the clear dynamics of plague disease there is a need
to assume the possibility of all the three forms of plague in the community at the same time
for adequate control strategy (Pechous et al., 2015). As postulated by Mead (2013), the three
main forms of plague have very stable mutual occurrences. When an infected individual with
one primary form of plague disease for example bubonic plague is not treated may progress
to the another secondary stage of the disease like Septicemic or pneumonic. This justi�es the
possibility of the occurrence of all three forms of plague in the community. This study focuses
in developing the mathematical model that includes all three major forms of plague with the full
coverage of their modes of transmissions in order to study its dynamics and spreading capacity.

5.2 Mathematical formulation

In this section, we formulate a model using the standard SEIR (Susceptible, Exposed, Infec-
tious, Recoveries) models in order to study the dynamics of the plague disease and ultimately
analyze the best way to combat the disease when it occurs in a community .

5.2.1 Variables and Parameters used in the model and their description

In this section we present variable and parameter and their description used in the model
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Table 11: Variables and their description for plague disease.

Variable Description

SH Susceptible Human population
EH Exposed human population
IHB Infectious human population with bubonic

plague
IHS Infectious human population with septicemic

plague
IHP Infectious human population with Pneu-

monic plague
RH Recovered Human population
SR Susceptible rodents
ER Exposed rodents
IRB Infectious rodents with bubonic plague
IRS Infectious rodents with septicemic plague
IRP Infectious rodents with pneumonic plague
SF Susceptible �eas
IF Infected �eas
A Pathogens in the soil/environment

Table 12: Parameters and their description for plague disease.

Parameters Description

�rbf Adequate contact rate: between IRB and �ea
�rsf Adequate contact rate: between IRS and �ea
�fh Adequate contact rate: between infectious �ea and human
�fr Adequate contact rate: between infectious �ea and rodent
�hph Adequate contact rate: between IHP and SH
�hsh Adequate contact rate: between IHS and SH
�rbh Adequate contact rate: between IRB and SH
�rph Adequate contact rate:between IRP and SH
�rsh Adequate contact rate: between IRS and SH
�1 Probability that human progress from susceptible to exposed
�2 Progression rate out of exposed human to infectious state
�1�3 Progression rate out of IHB to IHP
�2�3 Progression rate out of IHB to RH

Continued on next page
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Table 12 � Continued from previous page

Parameters Description

�3�3 Progression rate out of IHB to IHS
�1b Disease induced death rate of IHB
�4 Progression rate out of IHS to IHP and RH

�1s Disease induced death rate of IHS
�5 Progression rate out of IHP to RH

�1p Disease induced death rate of IHP
1 Probability that rodent progress from susceptible to exposed state
�hbf Adequate contact rate: between IHB and �ea
�hsf Adequate contact rate: between IHS and �ea
�rpr Adequate contact rate: between IRP and SR
�rsr Adequate contact rate: between IRS and SR
�hpr Adequate contact rate: between IHP and SR
�hsr Adequate contact rate: between IHS and SR
2 The rate at which rodent become infectious .
3 Progression rate out of IRB to IRS and IRP
�3b Disease induced death rate of IRB
4 Progression rate out of IRS to IRP
�3s Disease induced death rate of IRS
�3p Disease induced death rate of IRP
$ Progression rate of recovered human being to susceptible state
�1 Natural death rate for Human being
�2 Natural death rate for Flea
�3 Natural death rate for rodent
!1 Adequate contact rate: between Pathogens and Human being
!2 Adequate contact rate: between Pathogens and rodent
�1 Recruitment rate of pathogens to the environment by IHP
�2 Recruitment rate of pathogens to the environment by IRP
�4 Natural death rate for Pathogens
 1 Recruitment rate of human beings
 2 Recruitment rate of �eas
 3 Recruitment rate of rodents
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5.2.2 Model description

In the Model, we have four populations which are the Human population, Fleas, Rodents and
the Pathogens in the environment. The Human population is divided into six subgroups: the
subgroup of people who have not contracted the disease but may get it if they get to contact
IHS , IHP , IRS , IHP , IF or A to be referred to as susceptible and denoted by SH , People who
have the disease but haven’t shown any symptom and incapable of transmitting the disease to be
referred to as Exposed and denoted by EH ; those who are infected and capable of transmitting
the disease are divided into three subgroups: there are those who have bubonic plague denoted
by IHB, those with septicemic plague denoted by IHS and those who have Pneumonic plague
disease denoted by IHP . The fraction of population in IHB if treated may recover and move
to subgroup RH otherwise they progress either to a septicemic disease infectives IHS , or to
pneumonic plague disease infective IHP or else they die. The population in the subgroup IHS if
treated they recover and progress to the subgroup RH and if not treated they progress and join
subgroup IHP otherwise they die. The population of the subgroup IHP is considered as a very
dangerous stage of plague disease, it is very fatal stage of plague disease with the fatality rate
of about 100%, however if treated they recover and join subgroup RH otherwise they die. So
the total human population N1 is as given by (1):

N1 = SH + EH + IHB + IHS + IHP +RH : (1)

Fleas are divided into two sub-groups, those who have not contracted the disease but may get it
if they get in contact with infectious agent (rodent or human) referred to as susceptible �ea and
denoted by SF and those who are infected and are capable of transmitting the disease referred
to as infectives and denoted by IF . The total �ea population N2 is as given by (2)

N2 = SF + IF : (2)

The rodents are divided into �ve sub-groups; those who have not contracted the disease but may
get it if they get in contact with IHS , IHP , IRS , IHP , IF or A, referred to as susceptible rodents
and denoted by SR; those who have the disease but haven’t shown any symptom and incapable
of transmitting the disease referred to as Exposed and denoted by ER, those who are infected
and capable of transmitting the disease are divided into three subgroups, there are those who
have bubonic plague denoted by IRB, those with septicemic plague denoted by IRS and those
who have Pneumonic plague IRP . The fraction of population in IRB may progress to either
a septicemic plague disease infectives IRS , or to preneumonic plague disease infectives IRP .
The rodent population in the subgroup IRS may either progress to preneumonic plague disease
infectives IRP otherwise they die. The population in the subgroup IRP is considered as a very
dangerous stage of plague disease and very fatal so the mortality due to disease in this subgroup
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is approximated to be 100% . Then the total rodent population N3 is as given by (3)

N3 = SR + ER + IRB + IRS + IRP : (3)

The individuals with pneumonic plague may release pathogens causing plague disease to the
environment denoted by A through coughing or sneezing. When the condition in soil/environ-
ment is favorable, pathogens may remain infectious in the environment for long time. When
a susceptible individual adequately interact with the environment infested with yersinia pestis
gets the disease even in the absence of any vector.

Now, based on the description of interaction stated, we develop the a compartmental diagram
that describe dynamics of the plague disease in Human, Rodent, Flea and Pathogens in the
environment as given in Fig 31

Figure 31: Compartment Model for Plague Disease

5.2.3 Description of interactions

The susceptible �eas in sub-group SF get Yersinia pestis bacteria through biting the infected
rodent IRB or IRS who are the primary reservoir for the bacteria and become infected at the
rates �rbf and �rsf respectively. Flea may also get the disease when they bite the infected
human being with bubonic plague IHB or septicemic plague IHS at the rates �hbf and �hsf
respectively. Thus the �ea population gets plague infection with the force of infection given in
(4)

G3 =
�hbfIHB + �hsfIHS

N1
+

�rbfIRB + �rsfIRS
N3

: (4)
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The human population may get the disease in one of the following ways: when the infected
�ea IF bites and infect the susceptible human being SH at a rate �fh, when they interact with
one another; this can be with either a person with pneumonic plague IHP through airborne
transmission or septicemic plague IHS through physical or sexual contact at the rates �hph and
�hsh, respectively. Other infection is through airborne transmission through interaction with
rodent infected with pneumonic plague IRP or through touching or eating the infected rodent
with septicemic plague IRS at rates of �rph and �rsh, respectively. Human beings may also
get the infection from the environment when they breath in the bacteria or physically contact
the infected material at the rate of !1. This is to say human population acquire plague disease
following effective contact with infected human, rodent, �ea and the environment with force of
infection G1 given by (5)

G1 =
�hphIHP + �hshIHS

N1
+ �fh

IF
N2

+
�rphIRP + �rshIRS

N3
+ !1A: (5)

The subgroup SH , after the infection, progress and become latent to the disease at a probability
�1. After 2 to 7 days the sub-groups EH become infected into one of the three infectious
classes IHB, IHS or IHP (depending on the mode of transmission an individual is exposed to)
and capable of transmitting the disease. The proportional of EH progress and become infected
by bubonic plague IHB, septicemic plague IHS or Pneumonic plague IHP at the rate �2 and
proportional to �1, �2 or �3 respectively. The compartment IHB if gets treatment they recover
and move to sub group RH at a rate �3 otherwise they either progress to subgroups IHP or IHS
at a rate �3 or die either naturally at a rate �1 or due to the disease at a rate �1b. The fraction
of human with septicemic plague IHS if treated they recover at a rate �4 and join RH otherwise
they either progress to subgroup IHP at a rate �4 or die due to a disease at a rate �1s or naturally
at a rate �1. The compartments IHP if treated they recover at a rate �5 otherwise they die either
naturally at a rate �1 or due to the disease at a rate �1p. The subgroup RH attain temporally
immunity then return and become susceptible SH at a rate $.

The rodent population may get a disease in one of the following ways: when the infected �ea
IF bites and infect the susceptible rodent SR at a rate �fr, through interaction between rodent
themselves, which may be with rodent infected by pneumonic plague IRP or septicemic plague
IRS at the rates �rpr and �rsr, respectively. The other infection may be through interaction with
human infected with either pneumonic plague IHP , or septicemic plague IHS at a rates of �hpr
and �hsr, respectively. When the susceptible rodent suf�ciently interact with the pathogens in
environment through breathing in the bacteria or physically touch the infected material gets
the infections at the rate of !2. Rodent also gets the disease through adequate interaction with
Rodent, Human, Flea and Pathogens in the environment with force of infection G2 given by (6)

G2 =
�hprIHP + �hsrIHS

N1
+ �fr

IF
N2

+
�rprIRP + �rsrIRS

N3
+ !2A: (6)
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The subgroup SR, after the infection, they progress and become latent to the disease at a prob-
ability 1. After 2 to 7 days the sub-groups ER become infected and capable of transmitting
the disease, the fraction of it progress and become infected by bubonic plague IRB, septicemic
plague IRS or Pneumonic plague IRP at the rate 2 and proportional to �1,�2 or �3 respectively.
The rodent in subgroup IRB may either progress to subgroups IRP or IRS at a rate 3 or die
either naturally at a rate �3 or due to the disease at a rate �3b. The compartment IRS may either
progress to IRP at a rate 4 or die due to a disease at a rate �3s or naturally at a rate �3 and the
compartments IRP die either naturally at a rate �3 or due to the disease at a rate �3p.

With regard to the pathogens in the environment, we assume that the adequate interaction with
SH and SR has a negligible effect on the dynamics of pathogens population size in the envi-
ronment. The pathogens in the environment are populated at a constant rate �4. The infected
human with pneumonic plague IHP and Rodent with pneumonic plague IRP also populate the
environment A with the bacteria at the rate �1 and �2 respectively. Thus the environment is
populated with pathogens causing plague disease with the force of infection G4 given by (7)

G4 = �4 + �1
IHP
N1

+ �2
IRP
N3

: (7)

The pathogens within the environment suffer natural mortality at a rate �4. Human population
in sub-groups SH and EH , �ea population in sub-group SF and rodent population in sub-groups
SR and ER suffer natural mortality at a rate �1; �2 and �3 respectively. The compartments IHB,
IHS , IHP , IF , IRB, IRS and IRP suffer both natural death at the rate �1; �2 and �3 and disease
induced mortality at rates �1b, �1s, �1p, �2, �3b, �3s and �3p respectively. Human, Flea and rodent
are recruited at the rate  1,  2 and  3 respectively.

5.2.4 Model Equations for Plague Disease

We now use the variables and parameters and their descriptions given in Table 11 and Table
12, description of interactions and compartmental diagram which describe what is happening in
human, rodent, �ea and pathogens in the environment given in Fig 31 we derive the following
set of differential equations:
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Human Population

dSH
dt

=  1 +$RH � �1G1SH � �1SH ; (8a)

dEH
dt

= �1G1SH � �2EH � �1EH ; (8b)

dIHB
dt

= �2�2EH � �3IHB � (�1 + �1b)IHB; (8c)

dIHS
dt

= �3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS; (8d)

dIHP
dt

= �2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP ; (8e)

dRH

dt
= �3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH : (8f)

Rodent population

dSR
dt

=  3 � 1G2SR � �3SR; (9a)

dER
dt

= 1G2SR � 2ER � �3ER; (9b)

dIRB
dt

= 2�3ER � 3IRB � (�3 + �3b)IRB; (9c)

dIRS
dt

= 2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS; (9d)

dIRP
dt

= 2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ; (9e)

Fleas

dSF
dt

=  2s � �G3SF � �2SF ; (10a)

dIF
dt

= �G3SF � (�2 + �2)IF (10b)

Pathogens in the environment

dA
dt

= �4 +
�1IHP
N1

+
�3IRP
N3

� �4A: (11)

5.3 Basic properties of the model

5.3.1 Invariant region

Plague disease affects Human population, Rodents, Fleas and pathogens in the environment.
For the possible modeling process we assume that all state variables and parameters of the
model are non-negative for 8t � 0. The model system is analyzed in suitable feasible region
where all state variables are positive. We obtain the region under the Theorem 5.11.
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Theorem 5.11
All forward solutions in R14

+ of the system are feasible 8t � 0 if they enter the invariant region
� for � = 
H � 
R � 
F � 
A

where


H = (SH ; EH ; IHB; IHS; IHP ; RH) 2 R6
+ : SH + EH + IHB + IHS + IHP +RH < N1


R = (SR; ER; IRB; IRS; IRP ) 2 R5
+ : SR + ER + IRB + IRS + IRP < N3


F = (SF ; IF ) 2 R2
+ : SF + IF < N2


A = A 2 R1
+

And � is the positive invariant region of plague disease system.

Proof. We prove the theorem by taking into consideration one subgroup at a time.
For Human population:
We need to prove that the solution of the system 8 are feasible 8t > 0 as they enter invariant
region 
H

we now let 
H = (SH ; EH ; IHB; IHS; IHP ; RH) 2 R6 be any solution of the system with non-
negative initial conditions
Using the total human population given in (1), we will have

dN1

dt
=
dSH
dt

+
dEH
dt

+
dIHB
dt

+
dIHS
dt

+
dIHP
dt

+
dRH

dt
: (12)

Adding up the system (8) we get,

dN1

dt
=  1 � �1N1 � �1bIHB � �1sIHS � �1pIHP

dN1

dt
�  1 � �1N1:

We then get
dN1

dt
+ �1N1 �  1:

Finding the integrating factor IF = e�1t and multiplying it through out we get

e�1tdN1

dt
+ e�1tN1�1 �  1e�1t;

which gives
d(N1e�1t)

dt
�  1e�1t:
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Integrating on both sides yields

N1e�1t �
 1

�1
e�1t + C;

multiplying the equation by e��1t we get

N1 �
 1

�1
+ Ce��1t:

Using the initial condition t = 0; N1(t = 0) = N10

then we will get

N10 �
 1

�1
� C;

substituting the constant we get

N1 �
 1

�1
+ (N10 �

 1

�1
)e��1t:

When N10 >  1
�1

the population decreases asymptotically to  1
�1

and when N10 <  1
�1

the human
population increases asymptotically to  1

�1
as in Fig 32

Figure 32: Feasible region for human system (Plague disease)

Hence all the feasible solution of the system (8) enter the region


H =
�

(SH ; EH ; IHB; IHS; IHP ; RH) : N1 �Max
�
N10;

 1

�1

��
:

For Rodent population
We need to prove that the solution of the subsystem 9 are feasible 8t > 0 as they enter invariant
region 
R

we now let 
R = (SR; ER; IRB; IRS; IRP ) 2 R5 be any solution of the system with non-negative
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initial conditions
Using the total rodent population given in (3) we have;

dN3

dt
=
dSR
dt

+
dER
dt

+
dIRB
dt

+
dIRS
dt

+
dIRP
dt

: (13)

Adding up the subsystem (9)we get,

dN3

dt
=  3 � �3N3 � �3bIRB � �3sIRS � �3pIRP ;

we will then have
dN3

dt
�  3 � �3N3;

we then get
dN3

dt
+ �3N3 �  3:

Finding the integrating factor IF = e�3t and multiplying it through out we get

e�3tdN3

dt
+ e�3tN3�3 �  3e�3t;

which gives
d(N3e�3t)

dt
�  3e�3t:

Integrating on both sides yields

N3e�3t �
 3

�3
e�3t +D;

multiplying the equation by e��3t we get

N3 �
 3

�3
+De��3t:

Using the initial condition t = 0; N3(t = 0) = N30 then we will get

N30 �
 3

�3
� D;

substituting the constant we get

N3 �
 3

�3
+ (N30 �

 3

�3
)e��3t:

When N30 >  3
�3

the population decreases asymptotically to  3
�3

and when N30 <  3
�3

the rodent
population increases asymptotically to  3

�3
as in Fig 33.
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Figure 33: Feasible region for rodent system (Plague disease)

Hence all the feasible solution of the system (9) enter the region.


R =
�

(SR; ER; IRB; IRS; IRP ) : N3 �Max
�
N30;

 3

�3

��
:

For Flea population We need to prove that the solution of the subsystem 10 are feasible 8t > 0
as they enter invariant region 
F

we now let 
F = (SF ; IF ) 2 R2 be any solution of the system with non-negative initial condi-
tions
Using the total Flea population given in (2) we have:

dN2

dt
=
dSF
dt

+
dIF
dt

: (14)

Adding up the system (10) we get,

dN2

dt
=  2s � �2N2 � �2IF ;

which can be written as
dN2

dt
�  2s � �2N2;

We then get
dN2

dt
+N2�2 �  2s:

Finding the integrating factor IF = e�2t and multiplying it through out we get

e�2tdN2

dt
+ e�2tN2�2 � ( 2s)e�2t;

which gives
d(N2e�2t)

dt
� ( 2s)e�2t:

Integrating on both sides yields

N2e�2t �
 2s

�2
e�2t + E;
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multiplying the equation by e��2t we get

N2 �
 2s

�2
+ Ee��2t:

Using the initial condition t = 0; N2(t = 0) = N20

then we will get

N20 �
 2s

�2
� E;

substituting the constant we get

N2 �
 2s

�2
+ (N20 �

 2s

�2
)e��2t:

When N20 >  2s
�2

the population decreases asymptotically to  2s
�2

and when N20 <  2s
�2

the �ea
population increases asymptotically to  2s

�2
as in Fig 34.

Figure 34: Feasible region for �ea system (Plague disease)

Hence all the feasible solution of the system (10) enter the region


F =
�

(SF ; IF ) : N2 �Max
�
N20;

 2s

�2

��
:

For Pathogens population
We need to prove that the solution of the system (Pathogens) are feasible 8t > 0 as they enter
invariant region 
A

we now let 
A = A 2 R1
+ be any solution of the system with non-negative initial conditions

Then from the equation (11)

dA
dt

= �4 + �1
IHP
N1

+ �2
IRP
N3
� !1A� !2A� �4A: (15)

But
IHP � N1; IRP � N3
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Then this implies that
IHP
N1
� 1;

IRP
N3
� 1:

Then the equation (15) becomes
dA
dt
� �4 + �1 + �2 � !1A� !2A� �4A:

Then we will have
dA
dt

+ (!1 + !2 + �4)A � �1 + �2 + �4:

Finding the integrating factor IF = e(!1+!2+�4)t and multiplying it through out we get

e(!1+!2+�4)tdA
dt

+ e(!1+!2+�4)t(!1 + !2 + �4)A � e(!1+!2+�4)t(�1 + �2 + �4);

which gives
d(Ae(!1+!2+�4)t)

dt
� (�1 + �2 + �4)e(!1+!2+�4)t:

Integrating on both sides yields

Ae(!1+!2+�4)t �
�1 + �2 + �4

!1 + !2 + �4
e(!1+!2+�4)t +B:

Multiplying the equation by e�(!1+!2+�4)t we get

A(t) �
�1 + �2 + �4

!1 + !2 + �4
+Be�(!1+!2+�4)t:

Using the initial condition t = 0; A(t = 0) = A0

then we will get

A0 �
�1 + �2 + �4

!1 + !2 + �4
� B;

substituting the constant we get

A(t) �
�1 + �2 + �4

!1 + !2 + �4
+ (A0 �

�1 + �2 + �4

!1 + !2 + �4
)e�(!1+!2+�4)t:

When A0 > �1+�2+�4
�4

pathogens decreases asymptotically to �1+�2+�4
�4

and when N30 <
�1+�2+�4

�4
pathogens increases asymptotically to �1+�2+�4

�4
as in Fig 35.
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Figure 35: Feasible region for pathogens (Plague disease)

Hence the feasible solution of the system (11) enter the region


A =
�
A : A �Max

�
A0;

�1 + �2 + �4

�4

��

5.3.2 Positivity of the solution

We need to show that all variables and parameters of the model must be non negative 8t � 0.
We now solve the equations of the system in their patches for testing the positivity.

Theorem 5.12
Let the initial values of the system (8), (9), (10) and (11) be: (SH(0), SR(0),SF (0), A0) > 0 and
(EH(0), IHB(0), IHS(0), IHP (0), RH(0), ER(0), IRB(0), IRS(0), IRP (0), IF (0))� 0. Then the
solution set SH(t), SR(t), SF (t), A(t), EH(t), IHB(t), IHS(t), IHP (t), RH(t), ER(t), IRB(t),
IRS(t), IRP (t) and IF (t) are positive 8t � 0.

Proof. For Human System
Using the �rst equation in system (8) we have

dSH
dt

=  1 +$RH � �1G1SH � �1SH ;

dSH
dt
� �(�1G1 + �1)SH :

Integration yields
SH � SH0e�

R t
0 (�1G1(x)+�1)dx > 0;

since
e�(R t0 (�1G1(x)+�1)dx) > 0:

From the second equation we have

dEH
dt

= �1G1SH � �2EH � �1EH ;

dEH
dt
� �(�2 + �1)EH :

Integration yields
EH � EH0e�(�2+�1)t > 0;
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since
e�(�2+�1)t > 0:

From the third equation of system (8) we have

dIHB
dt

= �2�2EH � �3IHB � (�1 + �1b)IHB

dIHB
dt
� �(�3 + �1 + �1b)IHB:

Integrating we get
IHB � IHB0e�(�3+�1+�1b)t > 0;

since
e�(�3+�1+�1b)t > 0:

Fourth equation of the system we will have

dIHS
dt

= �3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS

dIHS
dt
� �(�4 + �1 + �1s)IHS:

Integrating we get
IHS � IHS0e�(�4+�1+�1s)t > 0;

since
e�(�4+�1+�1s)t > 0:

The �fth equation will be

dIHP
dt

= �2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP :

dIHP
dt
� �(�5 + �1 + �1p)IHP :

Integrating we get
IHP � IHP0e�(�5+�1+�1p)t > 0:

since
e�(�5+�1+�1p)t > 0:

And the last equation in system (8) we have

dRH

dt
= �3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH ::

dRH

dt
� �($ + �1)RH :

Integrating we get
RH � RH0e�($+�1)t > 0;
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since
e�($+�1)t > 0:

For Rodent System
Using equation one from system (9) we have

dSR
dt

=  3 � 1G2SR � �3SR;:

dSR
dt
� �(1G2 + �3)SR:

Integrating we get
SR � SR0e�

R t
0 (1G2(x)+�3)dx > 0;

since
e�(R t0 (1G2(x)+�3)dx) > 0:

From the second equation of the system (9) we have

dER
dt

= 1G2SR � 2ER � �3ER;

from here we get
dER
dt
� �(2 + �3)ER:

Integrating we get
ER � ER0e�(2+�3)t > 0;

since
e�(2+�3)t > 0:

And the from the third equation of system (9) we have

dIRB
dt

= 2�3ER � 3IRB � (�3 + �3b)IRB:

We will then have
dIRB
dt
� �(3 + �3 + �3b)IRB:

Integrating we get
IRB � IRB0e�(3+�3+�3b)t > 0;

since
e�(3+�3+�3b)t > 0:

The fourth equation will be

dIRS
dt

= 2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS:
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We will then have
dIRS
dt
� �(4 + �3 + �3s)IRS:

Integrating we get
IRS � IRS0e�(4+�3+�3s)t > 0;

since
e�(4+�3+�3s)t > 0:

And the from the last equation of system (9) we have

dIRP
dt

= 2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP :

We will then have
dIRP
dt
� �(�3 + �3p)IRP :

Integrating we get
IRP � IRP0e�(�3+�3p)t > 0;

since
e�(�3+�3p)t > 0:

For Flea System
Now from the �rst equation of system (10) we will have

dSF
dt

=  2s � �G3SF � �2SF :

dSF
dt
� �(�G3 + �2)SF :

Integrating we get
SF � SF0e�

R t
0 (�G3(x)+�2)dx > 0;

since
e�(R t0 (�G3(x)+�2)dx) > 0:

Taking the second equation we have

dIF
dt

= �G3SF � (�2 + �2)IF :

Then we have
dIF
dt
� �(�2 + �2)IF :

Integrating we have
IF � IF0e�(�2+�2)t > 0;

since
e�(�2+�2)t > 0:
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For Pathogens in the Environment
The subgroup has only one equation so using equation (11) we will have

dA
dt

= �4 + �1
IHP
N1

+ �2
IRP
N3
� !1A� !2A� �4A:

If we take !1 + !2 = !
Then we will have

dA
dt
� �(! + �4)A:

Integrating we get
A � A0e�(!+�4)t > 0;

Since
e�(!+�4)t > 0:

Therefore the proof conclude that all variable in the plague disease model are positive.

5.4 Model analysis

In this section we consider existence of equilibrium states, reproduction number and stability of
the equilibrium points.

5.4.1 Disease Free Equilibrium

The model has disease free equilibrium which is obtained by setting IHB = IHS = IHP =
EH = RH = 0, IRB = IRS = IRP = ER = 0, IF = 0 and A = 0 for Human beings,
Rodents, Fleas and pathogens in the environment systems respectively. We then substitute the
above into the system (8),(9),(10) and (11) which are the systems for Human being, Rodents,
Fleas and Pathogens respectively. Then we have the disease free-equilibrium point given as:
E0
H =

�
 1
�1
; 0; 0; 0; 0; 0

�
, E0

R =
�
 3
�3
; 0; 0; 0; 0

�
, E0

F =
�
 2s
�2
; 0
�

and E0
A = 0 for human,

Rodent, Flea and pathogen respectively.
Then the disease free equilibrium of the entire system

E0(S0
H ; E

0
H ; I

0
HB; I

0
HS; I

0
HP ; R

0
H ; S

0
R; E

0
R; I

0
RB; I

0
RS; I

0
RP ; S

0
F ; I

0
F ; A

0)

= (
 1

�1
; 0; 0; 0; 0; 0;

 3

�3
; 0; 0; 0; 0;

 2s

�2
; 0; 0)
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5.4.2 Basic Reproduction Number R0

We de�ne the basic reproduction number as the expected number of secondary cases produced
by a single infected individual during the entire infectious period of that particular individual
into a completely susceptible population. The epidemiological criterion of R0 is that; if R0 < 1
then the single infected individual in entirely susceptible population infects less than one in-
dividual and hence the disease may be eradicated in the population and thus the disease-free
equilibrium point is asymptotically stable and cannot invade the population and if R0 > 1 it
means that a single infected individual in entirely susceptible population infects more than one
individuals and hence the disease may persist in the population, then, the disease free equilib-
rium point is unstable and can invade the population and persist for a long time (Allen et al.,
2008). There are several methods on how to �nd the the basic reproductive number but this
study is will be computed by using next generation method as described by Van den Driessche
and Watmough (2002).

We compute the basic reproduction number R0 using the next generation matrix as outlined by
Heesterbeek (2000) and Diekmann et al. (1990). The method has the advantage over the usual
next generation method that; the steps to reach an estimate of R0 and the matrix elements of the
next-generation matrix have a clear biological basis. It is easy to handle complex diseases like
plague disease which has multiple transmission roots from different infection agents.

The peculiarity of plague disease is in�uenced by three main factors: One is the fact that Plague
infection occurs in three main forms which are bubonic which is transmitted through �ea bite.
Septcemic plague which is mainly transmitted through indirect contact example touching or
eating the infected animals, �ea bite and Physical contact including sexual contact. And pneu-
monic plague which is mainly transmitted through airborne transmission. Two is the involve-
ment of two hosts (Human and rodent) and one vector (�ea). And three is the possibility of
the plague bacteria to remain infectious for a long time in a soil/environment and capable of
transmitting the disease to the susceptible individuals without the need of a vector �ea.

Now, each transmission agent in different plague infectious form differ in the way it transmit
the bacterial within or outside the individual’s population. It is therefore important to analyze
and compute the role of each infectious agent in determining the threshold quantity that will
tell whether the disease will occur or die out. The risk that an outbreak will actually occur,
determine the initial exponential increase in the number of infected individuals and determine
the fraction of population that would be used for control purposes.

To do this we �rst categorize individuals by their state at the moment they become infected
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(type at infection). These types-at-infection refers speci�cally to the birth of the infection in the
individual. These categories (type at infection) differs in the way they transmit plague disease
which in-turn differentiate their ability to produce secondary cases.

In our case we categories the individuals into eight states and label them as follows: Human
infected with bubonic plague (type 1), Human infected with septsemic plague (type 2), Human
infected with pneumonic plague (type 3), Rodent infected with bubonic plague (type 4), Rodent
infected with septcemic plague (type 5), Rodent infected with pneumonic plague (type 6) Flea
infested with pathogens (type 7) and the Pathogens in the environment (type 8).

We assume and label individual with bubonic plague as stage one of the disease, septsemic
plague as stage two and pneumonic plague as stage three. We also assume that each stage is
the secondary stage of the later. When an individual in stage one graduate to stage two we
only consider the current stage and ignore the later. We assume that the infection only goes in
ascending direction that is from stage one to two or two to three not the reverse of it.

Since the system has eight types-at-infection, the next-generation matrix, K, will be a 8 � 8
matrix with elements kij s . Each of the elements kij stands for expected number of new cases
of i caused by one infected individual of j. We now de�ne a matrix K whose entries are kij .
The resulting next generation matrix is as given in (16).

K =

0

BBBBBBBBBBBBBBB@

k11 k12 k13 k14 k15 k16 k17 k18

k21 k22 k23 k24 k25 k26 k27 k28

k31 k32 k33 k34 k35 k36 k37 k38

k41 k42 k43 k44 k45 k46 k47 k48

k51 k52 k53 k54 k55 k56 k57 k58

k61 k62 k63 k64 k65 k66 k67 k68

k71 k72 k73 k74 k75 k76 k77 k78

k81 k82 k83 k84 k85 k86 k87 k88

1

CCCCCCCCCCCCCCCA

(16)

Then, R0 = �(K) where �(K) is spectral radius of K.

The k11 is the expected number of new cases of human infected with bubonic plague caused by
one infected human with bubonic plague, k12 is the expected number of new cases of human
infected with bubonic plague caused by one infected human with septicemic plague, k13 is the
expected number of new cases of human infected with bubonic plague caused by one infected
human with pneumonic plague, k14 is the expected number of new cases of human infected
with bubonic plague caused by one infected rodent with bubonic plague, k15 is the expected
number of new cases of human infected with bubonic plague caused by one infected rodent
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with septicemic plague, k16 is the expected number of new cases of human infected with bubonic
plague caused by one infected rodent with pneumonic plague, k17 is the expected number of new
cases of human infected with bubonic plague caused by one infected �ea, k18 is the expected
number of new cases of human infected with bubonic plague caused by infected environment.

The k21 is the expected number of new cases of human infected with septicemic plague caused
by one infected human with bubonic plague, k22 is the expected number of new cases of human
infected with septicemic plague caused by one infected human with septicemic plague, k23 is
the expected number of new cases of human infected with septicemic plague caused by one
infected human with pneumonic plague, k24 is the expected number of new cases of human
infected with septicemic plague caused by one infected rodent with bubonic plague, k25 is the
expected number of new cases of human infected with septicemic plague caused by one infected
rodent with septicemic plague, k26 is the expected number of new cases of human infected with
septicemic plague caused by one infected rodent with pneumonic plague, k27 is the expected
number of new cases of human infected with septicemic plague caused by one infected �ea,
k28 is the expected number of new cases of human infected with septicemic plague caused by
infected environment.

The k31 is the expected number of new cases of human infected with pneumonic plague caused
by one infected human with bubonic plague, k32 is the expected number of new cases of human
infected with pneumonic plague caused by one infected human with septicemic plague, k33 is
the expected number of new cases of human infected with pneumonic plague caused by one
infected human with pneumonic plague, k34 is the expected number of new cases of human
infected with pneumonic plague caused by one infected rodent with bubonic plague, k35 is the
expected number of new cases of human infected with pneumonic plague caused by one infected
rodent with septicemic plague, k36 is the expected number of new cases of human infected with
pneumonic plague caused by one infected rodent with pneumonic plague, k37 is the expected
number of new cases of human infected with pneumonic plague caused by one infected �ea,
k38 is the expected number of new cases of human infected with pneumonic plague caused by
infected environment.

The k41 is the expected number of new cases of rodent infected with bubonic plague caused by
one infected human with bubonic plague, k42 is the expected number of new cases of rodent
infected with bubonic plague caused by one infected human with septicemic plague, k43 is the
expected number of new cases of rodent infected with bubonic plague caused by one infected
human with pneumonic plague, k44 is the expected number of new cases of rodent infected
with bubonic plague caused by one infected rodent with bubonic plague, k45 is the expected
number of new cases of rodent infected with bubonic plague caused by one infected rodent with
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septicemic plague, k46 is the expected number of new cases of rodent infected with bubonic
plague caused by one infected rodent with pneumonic plague, k47 is the expected number of new
cases of rodent infected with bubonic plague caused by one infected �ea, k48 is the expected
number of new cases of rodent infected with bubonic plague caused by infected environment.

The k51 is the expected number of new cases of rodent infected with septicemic plague caused
by one infected human with bubonic plague, k52 is the expected number of new cases of rodent
infected with septicemic plague caused by one infected human with septicemic plague, k53 is
the expected number of new cases of rodent infected with septicemic plague caused by one
infected human with pneumonic plague, k54 is the expected number of new cases of rodent
infected with septicemic plague caused by one infected rodent with bubonic plague, k55 is the
expected number of new cases of rodent infected with septicemic plague caused by one infected
rodent with septicemic plague, k56 is the expected number of new cases of rodent infected with
septicemic plague caused by one infected rodent with pneumonic plague, k57 is the expected
number of new cases of rodent infected with septicemic plague caused by one infected �ea,
k58 is the expected number of new cases of rodent infected with septicemic plague caused by
infected environment.

The k61 is the expected number of new cases of rodent infected with pneumonic plague caused
by one infected human with bubonic plague, k62 is the expected number of new cases of rodent
infected with pneumonic plague caused by one infected human with septicemic plague, k63 is
the expected number of new cases of rodent infected with pneumonic plague caused by one
infected human with pneumonic plague, k64 is the expected number of new cases of rodent
infected with pneumonic plague caused by one infected rodent with bubonic plague, k65 is the
expected number of new cases of rodent infected with pneumonic plague caused by one infected
rodent with septicemic plague, k66 is the expected number of new cases of rodent infected with
pneumonic plague caused by one infected rodent with pneumonic plague, k67 is the expected
number of new cases of rodent infected with pneumonic plague caused by one infected �ea,
k68 is the expected number of new cases of rodent infected with pneumonic plague caused by
infected environment.

The k71 is the expected number of new cases of of new cases of �ea infested with Yersinia pestis
caused by one infected human with bubonic plague, k72 is the expected number of new cases of
�ea infested with Yersinia pestis caused by one infected human with septicemic plague, k73 is
the expected number of new cases of �ea infested with Yersinia pestis caused by one infected
human with pneumonic plague, k74 is the expected number of new cases of �ea infested with
Yersinia pestis caused by one infected rodent with bubonic plague, k75 is the expected number
of new cases of �ea infested with Yersinia pestis caused by one infected rodent with septicemic
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plague, k76 is the expected number of new cases of �ea infested with Yersinia pestis caused by
one infected rodent with pneumonic plague, k77 is the expected number of new cases of �ea
infested with Yersinia pestis caused by one infected �ea, k78 is the expected number of new
cases of �ea infested with Yersinia pestis caused by infected environment.

The k81 is the expected number of new cases of of new cases of infected soil/environment
caused by one infected human with bubonic plague, k82 is the expected number of new cases
of infected soil/environment caused by one infected human with septicemic plague, k83 is the
expected number of new cases of infected soil/environment caused by one infected human with
pneumonic plague, k84 is the expected number of new cases of infected soil/environment caused
by one infected rodent with bubonic plague, k85 is the expected number of new cases of infected
soil/environment caused by one infected rodent with septicemic plague, k86 is the expected num-
ber of new cases of infected soil/environment caused by one infected rodent with pneumonic
plague, k87 is the expected number of new cases of infected soil/environment caused by one
infected �ea, k88 is the expected number of new cases of infected soil/environment caused by
infected environment.

Some elements equal 0 as not all type at infection infect all other type at infection. Example
human with bubonic plague IHB (type at infection 1) do not produce type at infection 1 (human
infected with bubonic plague), 4 (Rodent infected with bubonic plague), 5 (Rodent infected
with septicemic plague), 6 (Rodent infected with pneumonic plague) and 8 (Pathogens in the
environment). This means that k11, k14, k15, k16 and k18 are 0. The type at infection 2 (Human
infected with septicemic plague) also do not produce type at infection 1 (Human infected with
bubonic plague), 4(Rodent infected with bubonic plague), 6(Rodent infected with pneumonic
plague) and 8(Pathogens in the environment). This also means that k21, k24, k26 and k28 are zero
(0). The type at infection 3 do not produce type at infection 1(Human infected with bubonic
plague), 2(Human infected with septicemic plague), 4(rodent infected with bubonic plague), 5
and 7 which means that k31, k32, k34, k35 and k37 are zero. Type at infection 4 do not produce
type at infection 1, 2, 3, 4 or 8 which means that k41, k42, k43, k44 and k48 are zero. Type at
infection 5 do not produce type at infection 1, 3, 4, and 8 then k51, k53, k54 and k58 are zero.
The type at infection 6 do not produce type at infection 1, 2, 4, 5 and 7 thus k61, k62, k64, k65

and k67 are zero. Type at infection 7 also do not produce type at infection 3, 6, 7,and 8 thus k73,
k76, k77, and k78 are zero. And the type at infection 8 do not produce type at infection 1,2, 4,5, 7
and 8 which means that k81, k82, k84, k85, k87 and k88 are zero. Incorporating these, we modify
the matrix K as shown in matrix (17)
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K =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 k17 0
k21 k22 0 0 k25 0 k27 0
k31 k32 k33 0 0 k36 0 k38

0 0 0 0 0 0 k47 0
0 0 0 k54 k55 0 k57 0
0 0 0 k64 k65 k66 0 k68

k71 k72 0 k74 k75 0 0 0
0 0 k83 0 0 k86 0 0

1

CCCCCCCCCCCCCCCA

(17)

We will now explain the derivation of each matrix-elements in detail. We employ the deriva-
tion steps by Gail and Benichou (2000) to drive the expressions for kij . We mainly base our
derivation on the adequate contact rate between the infected individual type j and the suscepti-
ble individual type i, the expected duration of infection of individual type j and the probability
that the individual type j survive the duration between the latent stage to the time an individual
experience the onset clinical disease as in (18)

Kij =

0

BB@

Effective
contact

Rate

1

CCA�

0

BB@

Duration
of

infection

1

CCA�

0

BB@

Probability that the
individual survive

the incubation period

1

CCA (18)

The production of IHB, depend on probability at which susceptible �ea becomes infectious
(�) and the infected immigrants survive the incubation period. We also consider the rate at
which IF adequately bites the susceptible human and the bite results to a human infected with
bubonic plague IHB. The total number of human infected with bubonic plague caused by one
�ea infested with pathogens is as given in (19).

k17 =
�

�
� + �2

�
�2�fh
�2 + �2

(19)

Septicemic plague in human may be produced in various way; progression of untreated hu-
man with bubonic plague to human with septcemic plague, adequate contact(including sexual
contact) between humans with septicemic plague, adequate contact between rodent and human
with septicemic plague and from the �ea infested with pathogens. We consider the progression
rate of infected human with bubonic to septicemic �3�3, the adequate contact (it may be sexual
contact ) rate between humans with septicemic plague, rodent infected with septicemic plague
and the infected �ea to human with septicemic plague at the rates hsh, rsh and fh. Then the
number of human infected with septicemic plague from all the mentioned infectious agents is
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as given in (20a), (20b), (20c) and (20d).

k21 =
�2�3�2�3

(�2�2 + �1)(�1 + �3 + �1b)
(20a)

k22 =
�

�3�3

�3�3 + �1
+

�2�3

�2�3 + �1

�
�hsh

(�4 + �1 + �1s)
(20b)

k25 =
�

2�2

(2�2 + �3)
+

3(1� �)
3(1� �) + �3

�
�rsh

(4 + �3 + �3s)
(20c)

k27 =
�

�
� + �2

�
�1�fh
�2 + �2

(20d)

The proportion �1 and � of untreated IHB and IHS may progress and become IHP at the pro-
gression rate �3 and �3 respectively. We multiply the average period the IHB remain infected
with the rate at which they progress to IHP . IHP may also result from the airborne transmission
from the human or rodent with pneumonic plague at the rate hph or rph respectively. And
through the direct interaction with the environment at the rate !1. Then the total number of
human infected with pneumonic plague from the stated �ve sources is given in (21a), (21b),
(21c), (21d) and (21e)

k31 =
�2�3�2�1

(�2�2 + �1)(�3 + �1 + �1b)
(21a)

k32 =
�

�3�3

�3�3 + �1
+

�2�3

�2�3 + �1

�
�4�

�4 + �1 + �1s
(21b)

k33 =
�

�2�1

�2�1 + �1
+

�3�1

�3�1 + �1
+

�4�
�4�+ �1

�
�hph

�5 + �1 + �1p
(21c)

k36 =
�

2�1

2�1 + �3
+

3�
3�+ �3

+
4

4 + �3

�
�rph

�3 + �3p
(21d)

k38 =
�

�4

�4 + �4
+

�1

�1 + �4
+

�2

�2 + �4

�
!1

�4
(21e)

Production of number of rodent with bubonic plague IRB depend only on the �ea infested with
pathogens. The infection depends on the infection period of the �ea that survive the incubation
period and the proportion at which the adequate contact between infected �ea and susceptible
rodent causes bubonic plague �3�fr as given in (22).

k47 =
�

�
� + �2

�
�3�fr
�2 + �2

(22)

The septicemic plague in rodent is produced in three ways; one is when untreated rodent with
bubonic plague progresses and become septicemic plague infectives at the rate 3(1� �). Two,
is after adequate contact (it may also be a rodent eating or biting an infected individual) between
the susceptible rodent and a rodent infected with septicemic plague or human at the rate �rsr
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or �hsr respectively. Three is from the �ea infested with pathogens with the proportion that the
adequate contact between IF and the susceptible rodent results to IRS . The total number of IRS
infected from these infectious agent is as given in (23a), (23b), (23c) and (23d).

k52 =
�

�3�3

�3�3 + �1
+

�2�3

�2�3 + �1

�
�hsr

�4 + �1 + �1s
(23a)

k54 =
23�3(1� �)

(2�3 + �3)(3 + �3 + �3b)
(23b)

k55 =
�

2�2

(2�2 + �3)
+

3(1� �)
3(1� �) + �3

�
�rsr

4 + �3 + �3s
(23c)

k57 =
�

�
� + �2

�
�2�fr
�2 + �2

(23d)

IRP may be the result of airborne transmission between the susceptible rodent and the human
and rodent with pneumonic plague at the rate �hpr and �rpr respectively. It may also occur from
the progression of untreated IRB and IRS at the rate 3 and 4 respectively. The pathogens in
soil/environment may also cause IRP after the adequate rate of interaction !2. Now the total
number of IRB resulting from these interaction are in (24a), (24b), (24c), (24d) and (24e).

k63 =
�

�2�1

�2�1 + �1
+

�3�1

�3�1 + �1
+

�4�
�4�+ �1

�
�hpr

�5 + �1 + �1p
(24a)

k64 =
23�3�

(2�3 + �3)(3 + �3 + �3b)
(24b)

k65 =
�

2�2

(2�2 + �3)
+

3(1� �)
3(1� �) + �3

�
4

4 + �3 + �3s
(24c)

k66 =
�

2�1

2�1 + �3
+

3�
3�+ �3

+
4

4 + �3

�
�rpr

�3 + �3p
(24d)

k68 =
�

�4

�4 + �4
+

�1

�1 + �4
+

�2

�2 + �4

�
!2

�4
(24e)

Flea are infested with pathogens from human and rodent infected with bubonic and septicemic
plague at the rate hbf , hsf , rbf and rsf . The infection is dictated by the probability that
human and rodent with bubonic and septicemic plague survive the incubation period and the
adequate rates of contact. From these interaction we get the total number of infectious �ea is as
given in (25a), (25b), (25c) and (25d).

k71 =
�2�2�hbf

(�2�2 + �1)(�1 + �3 + �1b)
(25a)

k72 =
�

�3�3

�3�3 + �1
+

�2�3

�2�3 + �1

�
�hsf

�4 + �1 + �1s
(25b)

k74 =
2�3�rbf

(2�3 + �3)(3 + �3 + �3b)
(25c)

k75 =
�

2�2

(2�2 + �3)
+

3(1� �)
3(1� �) + �3

�
�rsf

4 + �3 + �3s
(25d)
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The pathogens are released in the environment at the rates �1 and �1 from IHP and IRP respec-
tively. The released number of pathogens at a given time depends on the infectious period of
the rodent and human infected with pneumonic plague. And the probability that IHP and IRP
survive the incubation period. The total pathogens in soil/environment is as given in (26a) and
(26b).

k83 =
�

�2�1

�2�1 + �1
+

�3�1

�3�1 + �1
+

�4�
�4�+ �1

�
�1

�5 + �1 + �1p
(26a)

k86 =
�

2�1

2�1 + �3
+

3�
3�+ �3

+
4

4 + �3

�
�2

�3 + �3p
(26b)

Each element in the matrix K represent the expected number of secondary cases produced
by infected individual j during the entire infectious period of that particular individual into a
completely susceptible population i (Hartemink et al., 2008).

We obtain the basic reproduction numberR0 by computing the maximum modulus of the eigen-
values of the next-generation matrixK (Diekmann et al., 1990; Heesterbeek, 2000). Now using
mapple computing software package, the basic reproduction number is:

R0 =
k22 + k55

4
+

1
2

s

A1 +
1

3 3
p

2
A4 +

A5

3A4
+

1
2

s

A2 �
1

3 3
p

2
A4 �

A5

3A4
+

A3

4
q
A1 + 1

3 3p2
A4 + L3

3A4

#1 = k22k55 � k17k71 � k27k72 � k57k75

#2 = k17k55(k17k71 + k21k72)� k47(k25k54k72 + k22(k55k74 + k54k75))

#3 = �k22 � k55

#4 = (k22 + k55)(k17k71 + k47k74)� k72(k17k21 � k27k55 + k25k57)� k75(k47k54 � k22k57)

A1 =
3#3 + 8#1

12

A2 =
3#3 � 8#1

6
A3 = 4#1#3 � #3

3 � 8#4

A4 =
1

3 3
p

2
((2#3

1 � 72#2#1 � 9#3#4#1 + 27#2
4 + 27#2

3#2))+

((2#3
1 � 72#2#1 � 9#3#4#1 + 27#2

4 + 27#2
3#

2
2 � 4(#2

1 + 12#2 � 3#3#4)3)
1
3 )

1
2

A5 = 3
p

2(#2
1 + 12#2 � 3#3#4)

Since the system has multiple infectious types from multiple hosts then the next generation
matrix produce the geometric mean of the number of infections per generation and the the basic
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reproduction number is the average number of secondary infections (Li and Blakeley, 2011). It
is shown that the basic reproduction number of plague disease depends on the expected number
of new cases of human infected with bubonic plague caused by one infected �ea (k17), the
expected number of new cases of human infected with septicemic plague caused by one infected
human with bubonic plague (k21), the expected number of new cases of human infected with
septicemic plague caused by one infected human with septicemic plague (k22 ), the expected
number of new cases of rodent infected with bubonic plague caused by one infected �ea (k47),
the expected number of new cases of rodent infected with septicemic plague caused by one
infected rodent with bubonic plague (k54 ), the expected number of new cases of rodent infected
with septicemic plague caused by one infected rodent with septicemic plague (k55), the expected
number of new cases of rodent infected with septicemic plague caused by one infected �ea
(k57), the expected number of new cases of of new cases of �ea infested with Yersinia pestis
caused by one infected human with bubonic plague (k71), the expected number of new cases of
�ea infested with Yersinia pestis caused by one infected human with septicemic plague (k72),
the expected number of new cases of �ea infested with Yersinia pestis caused by one infected
rodent with bubonic plague (k74) and the expected number of new cases of �ea infested with
Yersinia pestis caused by one infected rodent with septicemic plague(k75). The result may also
be interpreted that, among all elements of the matrix K, the kij that appear in RO gives more
signi�cant involvement in the dynamics and spread of plague disease.

5.4.3 Local stability of the Disease Free Equilibrium point

In this section, we prove the local stability of the Disease Free Equilibrium (DFE) point of
plague disease system. We are requred to prove that the trajectories start arbitrary close to the
equilibrium point but do not precisely reach it. We thus use Jacobian matrix J(E0) of system
(8) - (11) at DFE point:
Then we have

J(E0) =

 
J11 J12

J21 J22

!

(27)

where J11, J12, J21 and J22 are (7� 7) matrices given by;
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J11 =

0

BBBBBBBBBBBB@

��1 0 0 ��1�hshSH
N1

��1�hphSH
N1

$ 0
0 �(�2 + �1) 0 �1�hshSH

N1

�1�hphSH
N1

0 0
0 �2�2 �a6 0 0 0
0 �2�3 �3�3 �a7 0 0 0
0 �2�1 �1�3 �4� �a8 0 0
0 0 �2�3 �4(1� �) �5 �($ + �1) 0
0 0 0 �1�hsrSR

N1

�1�hprSR
N1

0 ��3

1

CCCCCCCCCCCCA

(28)

a6 = (�3 + �1 + �1b), a7 = (�4 + �1 + �1s), a8 = (�5 + �1 + �1p)

J21 =

0

BBBBBBBBBBBB@

0 0 0 1�hsrSR
N1

1�hprSR
N1

0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 ���hbfSF

N1

���hsfSF
N1

0 0 0
0 0 ��hbfSF

N1

���hsfSF
N1

0 0 0
0 0 0 0 �1

N1
0 0

1

CCCCCCCCCCCCA

(29)

J12 =

0

BBBBBBBBBBBB@

0 0 ��1�rshSH
N3

��1�rphSH
N3

0 ��1�fhSH
N2

��1!1SH
0 0 �1�rshSH

N3

�1�rphSH
N3

0 �1�fhSH
N2

�1!1SH
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 �1�rsrSR

N3

�1�rprSR
N3

0 �1�frSR
N2

�2!2SR

1

CCCCCCCCCCCCA

(30)

J22 =

0

BBBBBBBBBBBBBBBB@

�a3 0
1�rsrSR

N3

1�rprSR
N3

0 1�frSR
N2

2!2SR

�32 �a1 0 0 0 0 0
�22 3(1� �) �a2 0 0 0 0
2�1 3� 4 �a5 0 0 0

0 ���rbfSF
N3

���rsfSF
N3

0 ��2 0 0

0
��rbfSF
N3

��rsfSF
N3

0 0 �a4 0

0 0 0
�2

N3
0 0 ��4

1

CCCCCCCCCCCCCCCCA

(31)
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a1 = (3 + �3 + �3b), a2 = (4 + �3 + �3s), a3 = (2 + �3), a4 = (�2 + �2) , a5 = (�3 + �3p)

From the combined matrix J(E0), the diagonal entries from the �rst,sixth, seventh and twelves
column makes the four eigenvalues of the matrix (27). These are ��1, �($ + �1), ��3 and
��2. Now canceling their corresponding rows and columns we modify (27) and remain with
a (10 � 10) matrix with the modi�ed J11, J12, J21 and J22 as given in (32), (33), (34) and (35)
respectively;

J11 =

0

BBBBB@

�(�2 + �1) 0
�1�hshSH

N1

�1�hphSH
N1

�2�2 �a6 0
�2�3 �3�3 �a7 0
�2�1 �1�3 �4� �a8

1

CCCCCA
(32)

a6 = (�3 + �1 + �1b), a7 = (�4 + �1 + �1s), a8 = (�5 + �1 + �1p)

J21 =

0

BBBBBBBBBBBB@

0 0
�1�hsrSR

N1

�1�hprSR
N1

0 0 0 0
0 0 0 0
0 0 0 0

0
��hbfSF
N1

���hsfSF
N1

0

0 0 0 �1
N1

1

CCCCCCCCCCCCA

(33)

J12 =

0

B@
0 0 �1�rshSH

N3

�1�rphSH
N3

�1�hfSH
N2

�1!1SH
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1

CA (34)

J22 =

0

BBBBBBBBB@

�a3 0
1�rsrSR

N3

1�rprSR
N3

1�frSR
N2

2!2SR
�32 �a1 0 0 0 0
�22 3(1� �) �a2 0 0 0
2�2 3� 4 �a5 0 0

0
��rbfSF
N3

��rsfSF
N3

0 �a4 0

0 0 0
�2

N3
0 ��4

1

CCCCCCCCCA

(35)

a1 = (3 + �3 + �3b), a2 = (4 + �3 + �3s), a3 = (2 + �3), a4 = (�2 + �2), a5 = (�3 + �3p)
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Doing further computations we �nd other negative eigenvalues of the matrix (27) are ��4,
�(�2 +�2), �(�2+�2)(2+�3)1�frS0

R
�2

,�(�5 +�1 +�1p),�(�4 +�1 +�1b) and�(�3 +�1 +�1b). An-
other eigenvalue is �1+�2+�3+�4+�5��6

�2�1�1�4 1�fh�2 3�3
which is negative on the condition that (�1+�2+�3+�4+�5)

�6�4�2 3�3
<

1
where;

�1 = (�hph�4 + !1�1)�1 2s(�2 + �2)(�5 + �1 + �1p)�2�1�2 3�3(�1(�4 + �1 + �1s) + �3�1�2)

�2 = ((�2 + �2)�hsh + ��hsf�fr)(�5 + �1 + �1p)�1 2s�1�4�2 3�3((�3 + �1 + �1b) + �3�3�2�2)

�3 = (�rhp�4 + !1�2)(�2 + �2)(�3 + �1 + �1b)�3�2�3�4 2s�1 1�3�

�4 = (�5 + �1 + �1p)(�4 + �1 + �1s)1!2�2�2�2 3�2�1�1�4 1�fh�2 3

�5 = (�1�rph�4 + �2!1�2)�3�3�4��2�2 2s�3�1 1�3

�6 = (�5 + �1 + �1p)(�2 + �2)(�2 + �1)(�4 + �1 + �1b)(�3 + �1 + �1b) 2s�1�4�2 3�3

The computation also gives two complex eigenvalues with very long expressions and negative
real parts, which are named as �p1 + q1i and �p2 + q2i where p1; p2 and q1; q2 are real and
imaginary parts respectively. The other and the last eigenvalue is negative if and only ifR0 < 1,
where

R0 =
k22 + k55

4
+

1
2

s

A1 +
1

3 3
p

2
A4 +

A5

3A4
+

1
2

s

A2 �
1

3 3
p

2
A4 �

A5

3A4
+

A3

4
q
A1 + 1

3 3p2
A4 + L3

3A4

These results veri�es that the disease free equilibrium point E0 is locally asymptotically stable
(Morand et al., 2011). It then leads to Theorem 5.13.

Theorem 5.13
The Disease Free Equilibrium E0 of pneumonic plague is locally asymptotically stable if R0 <
1and unstable if R0 > 1.

5.4.4 Global stability of the disease-free equilibrium point

We use Metzler matrix method by Castillo-Chavez et al. (2002), to verify the existence
of global stability of disease free equilibrium point. We divide the system (8) - (11) into
transmitting and non-transmitting components.
To do this we �rst let Yn be the vector for non-transmitting compartments, Yi be the vector for
transmitting compartments and YE0;n be the vector of disease free point.
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8
>>>><

>>>>:

dYn
dt

= A1(Yn � YE0;n) + A2Yi

dYi
dt

= A3Yi

(36)

Using the transmitting and non transmitting compartment, we modify equation (36) to have;

Yn = (SH ; RH ; SR; SF )T Yi = (EH ; IHB; IHS; IHP ; ER; IRB; IRS; IRS; IF ; A)

YE0;n = (
 1

�1
; 0;

 3

�3
;
 2s

�2
)

Yn �YE0 ;n =

0

BBBB@

SH �  1
�1

RH

SR �  3
�3

SF �  2s
�2

1

CCCCA

To prove that the DFE point is globally and asymptotically stable, we need to show that Matrix
A1 has real negative eigenvalues and A3 is a Metzler matrix that has non-negative off diagonal
element. Now using (36) we have;

0

BBBB@

 1 +$RH � �1G1SH � �1SH
�3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH

 3 � 1G2SR � �3SR
 2s � �G3SF � �2SF

1

CCCCA
= A1

0

BBBB@

SH �  1
�1

RH

SR �  3
�3

SF �  2s
�2

1

CCCCA
+ A2

0

BBBBBBBBBBBBBBBBBBBB@

EH
IHB
IHS
IHP
ER
IRB
IRS
IRP
IF
A

1

CCCCCCCCCCCCCCCCCCCCA

137



and 0

BBBBBBBBBBBBBBBBBBBBB@

 1 + �1G1SH � �2EH � �1EH ;
�2�2EH � (�3 + �1 + �1b)IHB;

�3�3IHB + �2�3EH � (�4 + �1 + �1s)IHS;
�2�1EH + �3�1IHB + �4�IHS � (�5 + �1 + �1p)IHP ;

 3 + 1G2SR � 2ER � �3ER;
2�3ER � 3IRB � (�3 + �3b)IRB;

2�2ER + 3(1� �)IRB � (4 + �3 + �3s)IRS;
2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ;

�G3SF � (�2 + �2)IF

�4 +
�1IHP
N1

+
�2IRP
N3

� �4A:

1

CCCCCCCCCCCCCCCCCCCCCA

= A3

0

BBBBBBBBBBBBBBBBBBBB@

EH
IHB
IHS
IHP
ER
IRB
IRS
IRP
IF
A

1

CCCCCCCCCCCCCCCCCCCCA

The matrices A1, A2 and A3 are as below:

A1 =

0

BBBB@

��1 $ 0 0
0 �($ + �1) 0 0
0 0 ��3 0
0 0 0 ��2

1

CCCCA
(37)

A2 =

0

BBBB@

0 0 ��1�hshS0
H

N1

��1�hphS0
H

N1
0 0 ��1�rshS0

H
N3

��1�rphS0
H

N3
�a16 �a12

0 �3�3 (1� �)�4 �5 0 0 0 0 0 0
0 0 �1�hsrS0

R
N1

�1�hprS0
R

N1
0 0 �1�rsrS0

R
N3

�1�rprS0
R

N3
�a15 �a11

0 �a10
���hsfS0

F
N1

0 0 �a13
���rsfS0

F
N3

0 0 0

1

CCCCA

(38)

A3 =

0

BBBBBBBBBBBBBBBBBBBBB@

�a9 0 �1�hshS0
H

N1

�1�hphS0
H

N1
0 0 �1�rshS0

H
N3

�1�rphS0
H

N3
a16 a12

�2�2 �a6 0 0 0 0 0 0 0 0
�2�3 �3�3 �a7 0 0 0 0 0 0 0
�2�1 �3�1 �4� �a8 0 0 0 0 0 0

0 0
1�hsrS0

R

N1

1�hprS0
R

N1
�a3 0 1�rsrS0

R
N3

1�rprS0
R

N3
a15 a11

0 0 0 0 �32 �a1 0 0 0 0
0 0 0 0 �22 a14 �a2 0 0 0
0 0 0 0 2�1 3� 4 �a5 0 0
0 a10

��hsfS0
F

N1
0 0 a13

��rsfS0
F

N3
0 �a4 0

0 0 0 �1
N1

0 0 0 �2
N3

0 ��4

1

CCCCCCCCCCCCCCCCCCCCCA

(39)
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a16 = �1�fhS0
H

N2
n2 = (�3 + �1 + �1) n3 = (�4 + �1 + �1)

a13 = ��rbfS0
F

N3
a13 = 3(1� �) a15 = 1�frS0

R
N2

a12 = �1!1SH a11 = 1!2S0
R a10 =

��hbfS0
F

N1

S0
H =

 1

�1
S0
R =  3

�3
S0
F =

 2s

�2

The eigenvalues for matrix A1 are ��1, ��2, ��3 and �($ + �1). This con�rms that the
system

dYn
dt

= A1(Yn � YE0;n) + A2Yi

is globally and asymptotically stable at YE0 . A3 is a Metzler stable matrix since all its off-
diagonal elements are non-negative. Therefore Disease Free Equilibrium point for Plague dis-
ease system is globally asymptotically stable thus we have the Theorem 5.14.

Theorem 5.14
The disease-free equilibrium point is globally asymptotically stable inE0 ifR0 < 1and unstable
if R0 > 1.

5.5 Existence of Endemic Equilibrium

Here, we consider the situation in which the disease persists in a population. We investigate
conditions for existence of the endemic equilibrium point of the system (8)-(11). The endemic
equilibrium point E�(S�H ; E�H ; I�HB; I�HS; I�HP ; R�H ; S�R; E�R; I�RB; I�RS; I�RP ; S�F ; I�F ; A�) is ob-
tained by solving the equations obtained by setting the derivatives of (8)-(11) equal to zero as
in (40)-(43) which exist for RO > 1.

Human Population

0 =  1 +$RH � �1G1SH � �1SH ; (40a)

0 = �1G1SH � �2EH � �1EH ; (40b)

0 = �2�2EH � �3IHB � (�1 + �1b)IHB; (40c)

0 = �3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS; (40d)

0 = �2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP ; (40e)

0 = �3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH : (40f)
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Rodent population

0 =  3 � 1G2SR � �3SR; (41a)

0 = 1G2SR � 2ER � �3ER; (41b)

0 = 2�3ER � 3IRB � (�3 + �3b)IRB; (41c)

0 = 2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS; (41d)

0 = 2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ; (41e)

Fleas

0 =  2s � �G3SF � �2SF ; (42a)

0 = �G3SF � (�2 + �2)IF (42b)

Pathogens in the environment

0 = �4 +
�1IHP
N1

+
�3IRP
N3

� �4A: (43)

We use the approach described in the studies by Tumwiine et al. (2007) and Massawe et al.
(2015) to prove the existence of endemic equilibrium. For the endemic equilibrium to exist it
must satisfy the condition EH 6= 0 or IHB 6= 0 or IHS 6= 0 or IHP 6= 0 or ER 6= 0 or IRB 6= 0
or IRS 6= 0 or IRP 6= 0 or IF 6= 0 or A 6= 0 that is SH > 0 or EH > 0 or IHB > 0 or IHS > 0
or IHP > 0 or SR > 0 or IRB > 0 or IRS > 0 or IRP > 0 or ER > 0 or SF > 0 or IF > 0 or
A > 0 must be satis�ed. Now adding system (40)-(43) we have

 1 +  2s +  3 � �1(SH + EH + IHB + IHS + IHP +RH)� �2(SF + IF )

� �3(SR + ER + IRB + IRS + IRP )� �1bIHB � �1sIHS � �1pIHP � �3bIRB

� �3sIRS � �3pIRP � �2IF + �4 +
�1IHP
N1

+
�3IRP
N3

� �4A = 0

(44)

substituting equation (43), N1 = SH + EH + IHB + IHS + IHP + RH , N2 = SF + IF and
N3 = SR + ER + IRB + IRS + IRP into equation (44).
It follows that;

 1+ 2s+ 3 = �1N1+�2N2+�3N3+�1bIHB+�1sIHS+�1pIHP+�3bIRB+�3sIRS+�3pIRP+�2IF

Since  1 +  2s +  3 > 0, �1 > 0, �2 > 0, �3 > 0, �1b > 0, �1s > 0, �1p > 0, �2 > 0,
�3b > 0, �3s > 0 and �3p > 0 we can discern that �1N1 > 0, �2N2 > 0, �3N3 > 0, �1bIHB > 0,
�1sIHS > 0, �1pIHP > 0, �2IF > 0, �3bIRB > 0, �3sIRS > 0 and �3pIRP > 0 implying that
SH > 0, EH > 0, IHB > 0, IHS > 0, IHP > 0, SF > 0, IF > 0, SR > 0, ER > 0, IRB > 0,
IRS > 0 and IRP > 0.
Hence endemic equilibrium point of the plague disease model in human, rodent, �ea and
pathogens in the environment exists.
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5.5.1 Stability of endemic equilibrium point

In this section, we derive the conditions under which the endemic equilibrium points are stable
or unstable. That is the solution starting suf�ciently close to the equilibrium remains close to
the equilibrium and approaches the equilibrium as t ! 1 , or if there are solutions starting
arbitrary close to the equilibrium point do not approach it. We only prove the global stability
of the endemic equilibrium since we have already proven the local stability of the Disease free
equilibrium which by Van den Driessche and Watmough (2002) it advocates for local stability
of the Endemic Equilibrium for the reverse condition.

Global stability of Endemic equilibrium point

We prove the global stability of the endemic equilibrium point using Korobeinikov approach.
We �rst formulate a suitable Lyapunov function for plague disease model (Korobeinikov, 2004,
2007)
The Lyapunov function is as given in the form below;

V =
X

ai(yi � y�i ln yi)

where ai is de�ned as a properly selected positive constant, yi de�nes the population of the ith

compartment, and y�i is the equilibrium point.
Now the Lyapunov function is,

V = W1(SH � S�H lnSH) +W2(EH � E�H lnEH) +W3(IHB � I�HB ln IHB)
+W4(IHS � I�HS ln IHS) +W5(IHP � I�HP ln IHP ) +W6(RH �R�H lnRH)
+W7(SR � S�R lnSR) +W8(ER � E�R lnER) +W9(IRB � I�RB ln IRB)
+W10(IRS � I�RS ln IRS) +W11(IRP � I�RP ln IRP ) +W12(SF � S�F lnSF )
+W13(IF � I�F ln IF ) +W14(A� A� lnA)

The constants Wi are non negative in � for i = 1; 2; 3:::12 , V is Lyapunov function. The
function V together with its constants W1;W2:::W14 are chosen such that V is continuous and
differentiable in a space

We compute the time derivative of V this yields;

dV
dt

= W1(1� S�H
SH

)dSHdt +W2(1� E�H
EH

)dEHdt +W3(1� I�HB
IHB

)dIHBdt +W4(1� I�HS
IHS

)dIHSdt

+W5(1� I�HP
IHP

)dIHPdt +W6(1� R�H
RH

)dRHdt +W7(1� S�R
SR

)dSRdt +W8(1� E�R
ER

)dERdt
+W9(1�

I�RB
IRB

)
dIRB
dt

+W10(1�
I�RS
IRS

)
dIRS
dt

+W11(1�
I�RP
IRP

)
dIRP
dt

+W12(1�
S�F
SF

)
dSF
dt

+W13(1�
I�F
IF

)
dIF
dt

+W14(1�
A�

A
)
dA
dt
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Using system (8) - (11) we will have

dV
dt

= W1(1� S�H
SH

)[ 1 +$RH � �1G1SH � �1SH ; ]

+W2(1� E�H
EH

)[�1G1SH � �2EH � �1EH ; ]

+W3(1�
I�HB
IHB

)[�2�2EH � �3IHB � (�1 + �1b)IHB;

+W4(1� I�HS
IHS

)[�3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS; ]
+W5(1� I�HP

IHP
)[�2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP ; ]

+W6(1� R�H
RH

)[�3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH ; ]
+W7(1� S�R

SR
)[ 3 � 1G2SR � �3SR; ]

+W8(1� E�R
ER

)[1G2SR � 2ER � �3ER; ]
+W9(1� I�RB

IRB
)[2�3ER � 3IRB � (�3 + �3b)IRB; ]

+W10(1� I�RS
IRS

)[2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS; ]
+W11(1� I�RP

IRP
)[2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ; ]

+W12(1� S�F
SF

)[ 2s � �G3SF � �2SF ; ]
+W13(1� I�F

IF
)[�G3SF � (�2 + �2)IF ]

+W14(1� A�
A )[�4 + �1IHP

N1
+ �2IRP

N3
� �4A:]

Using system (8) - (11) at endemic equilibrium after simpli�cation we can derive the following:

dV
dt

=�W1(1�
S�H
SH

)2 �W2(1�
E�H
EH

)2 �W3(1�
I�HB
IHB

)2 �W4(1�
I�HS
IHS

)2

�W5(1�
I�HP
IHP

)2 �W6(1�
R�H
RH

)2 �W7(1�
S�R
SR

)2 �W8(1�
E�R
ER

)2

�W9(1�
I�RB
IRB

)2 �W10(1�
I�RS
IRS

)2 �W11(1�
I�RP
IRP

)2 �W12(1�
S�F
SF

)2

�W13(1�
I�F
IF

)2 �W14(1�
A�

A
)2

+ F (SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A)

(45)

where the function F (SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A) is non
positive. We now follow the procedures by McCluskey (2006), and Korobeinikov and Wake
(2002). We take:

F (SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A) � 0

for all
SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A:

Then dV
dt � 0 for all SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A and it is

zero when SH = S�H ; EH = E�H ; IHB = I�HB; IHS = I�HS; IHP = I�HP ; RH = R�H ; SR =
S�R; ER = E�R; IRB = I�RB; IRS = I�RS; IRP = I�RP ; SF = S�F ; IF = I�F ; A = A�. Hence the
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largest compact invariant set in SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A
such that dVdt = 0 is the singleton E� which is Endemic Equilibrium point of the plague disease
system (8) - (11). Using LaSalles’s invariant principle by LaSalle (1976), it entails that endemic
equilibrium point of plague disease system (E�) is globally asymptotically stable in the interior
of the region of SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A and thus leads to
Theorem 5.15.

Theorem 5.15
If R0 > 1 then the model system (8) - (11) of plague disease has a unique endemic equilibrium
point E� which is globally asymptotically stable in SH , EH , IHB, IHS , IHP , RH , SR, ER, IRB,
IRS , IRP , SF , IF and A.

5.6 Sensitivity and Elasticity analysis and Numerical Simulation

In this section, we use sensitivity and elasticity analysis to determine the impact that expected
number of new cases of i caused by one infected individual of j ( kij) has on the basic repro-
duction number R0 . This is vital as it will help to know what and where to prioritize in order
to control the disease.

5.6.1 Parameter Estimation

We obtain the parameters from the literature that relate to this study, the present information
on plague disease and through estimation using sensitivity analysis and simulations. Table 13
shows the values of the parameters as used in the model.

Table 13: Parameter values for plague disease model.

Parameters Value/Range Reference/Source

�3 0.2 Galtier and Mouchiroud (1998)
�3 0.038 Keeling and Gilligan (2000a)
 1 0.09 Ngeleja et al. (2016)
�1 0.99 Estimated
�2 0.23 Gani and Leach (2004)
�1 0.3 Estemated
�2 0.4 Estemated

Continued on next page
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Table 13 � Continued from previous page

Parameters Value/Range Reference/Source

�3 0.3 Estemated
�1b 0.04 Keeling and Gilligan (2000a)
�3 0.5 Estimated
�3s 0.09 Estemated
�4 0.23 Estimated
�1s 0.069 Estimated
�1 0.3 Estimated
�5 0.4 Gani and Leach (2004)
�1p 0.63 Kugeler et al. (2015); Keeling and Gilligan (2000a)
� 0.71 Estimated
�2 0.2 Estimated
�hph 0.5 Estimated
�rsf 0.1 Eisen et al. (2007)
�hsh 0.85 Estimated
�rph 0.805 Estimated
�rsh 0.8 Estimated
 3 0.03 Keeling and Gilligan (2000a)
�2 0.03 Benkirane et al. (2009)
�hbf 0.1 Eisen et al. (2007)
�rbf 0.99 Estimated
1 0.92 Estimated
2 0.98 Estimated
�3 0.4 Estimated
�3b 0.1 Estimated
$ 0.33 Kugeler et al. (2015)
�fh 0.0641 Eisen et al. (2007)
�2 0.3 Estimated
� 0.5 Estimated
4 0.05 Estimated
�1 0.3 Estimated
�3p 0.14 Estimated
�hsf 0.1 Eisen et al. (2007)
�fr 0.0641 Eisen et al. (2007)
�hpr 0.00005 Estimated

Continued on next page
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Table 13 � Continued from previous page

Parameters Value/Range Reference/Source

�hsr 0.00008 Estimated
�rpr 0.9 Estimated
�rsr 0.9 Estimated
 2s 1000 Estimated
� 0.99 Estimated
�2 0.07 Benkirane et al. (2009)
�1 0.04 Keeling and Gilligan (2000a)
�4 50,000 Estimated
�1 0.2 Estimated
�2 0.4 Estimated
�4 0.1 Ngeleja et al. (2016)
3 0.194 Tollenaere et al. (2010)

The dynamics of compartments in Human beings, Rodents, Fleas and Pathogens in the envi-
ronment are shown in Fig. 36a, Fig. 36b, Fig. 36c and Fig. 36d respectively. In the human
population we see the fast decrease of the susceptible and exposed population until it reaches its
endemic equilibrium point. This result is due to the assumption that there will be all three forms
of plague. The presence of all forms of plague results to many ways in which an individual may
be infected and thus lead to a very high force of infection.

The number of recovered human beings will slightly increase and drop off to its endemic equi-
librium point. This result is also cemented by Gani and Leach (2004) because as there is no
treatment and with the presence all three forms of plague the recovery rate must be very small.
The rapid decrease of the susceptible and exposed class will result to a rise of the infectious
classes for a period within 0 � 5 years before it decreases to its endemic point. As there is no
any method introduced in the system to control the disease the infected classes IHB, IHS and
IHP will rise very fast in the �rst years before it drops to its the endemic point.

We assume no recovery in the rodent population, and therefore all infected individuals will end-
up dying due to the disease after some time. That is to say with time the rodent population
also experience the same dynamics as in human population. The number of infected classes
IRB, IRB and IRB rises within the time between 0 � 10 years to its maximum and linger at its
endemic equilibrium state. The susceptible and exposed rodent drops within the �rst ten years
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to its endemic point.

As the disease becomes endemic to the community, the number of �ea getting the disease and
the number pathogens in the environment will signi�cantly increase. The increase of IF is
mostly contributed by by the rise in number of IHB, IHS , IRB and IRS . Moreover the increase
of A is due to the increase of the number of individuals (Human and Rodent) with pneumonic
plague. The increase of individuals with bubonic and septicemic plague increases the rate at
which the �ea gets the infection. Then the number of susceptible �eas will decreases with time
to its endemic point.

(a) (b)

(c) (d)

Figure 36: The dynamics of Human, Rodent, Flea and Pathogens in the environment with baseline

parameter values given in Table 13.

The system consider vast ways of transmission between one individual to the other as
it has all three forms of plague disease. But the infectious �eas still carries the very
important role in the transmission and spread of plague disease (Bitam et al., 2010).
Fleas are the major player in the transmission of bubonic and septicemic plague. Which
consequently makes it the very important agent in the transmission of plague disease.
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Figure 37: Effect of increased number of infected �ea on Human and Rodent population.

Figure 37 illustrate the infect of �ea to all three forms of plague in Human being and Rodent
populations. Rodents being the primary host for the �eas, they are mostly affected by the
infected �ea followed by human population. In both populations, �eas mostly transmit bubonic
plague followed by septicemic plague. Pneumonic plague in human and rodent shows to be
least affected by the infected �ea as the transmission is not direct. It depends on the progression
of those with bubonic and septicemic plague if not treated they become Pneumonic plague
infectives.

The increase of the number of individuals with pneumonic plague in both Human beings and
Rodents is mainly due to the airborne transmission. An individual with pneumonic plague
may cause infection within and outside the individual’s population. Fig 38 shows the effect
of increasing number of human beings and rodents with pneumonic plague to the human and
rodent with pneumonic plague

(a) (b)

Figure 38: Effect of increased number of Human and Rodent with pneumonic plague .

Increase of IHP and IRP is not limited to airborne transmission. When individuals with sep-
ticemic and bubonic are not treated, a fraction �3�1IHB, 3�IRB, 4IRS and �4�IHS progresses
and become pneumonic plague infectives. Figure 39 shows the effect of the increasing num-
ber of individuals with bubonic and septicemic plague in both human beings and rodents with

147



pneumonic plague.

(a) (b)

Figure 39: Effect of individual with IHB , IHS ,IRB and IRS to IHP and IRP .

The zoonotic nature of Plague gives it the very unique feature in terms of its spread and trans-
mission. The force of infection in both human and rodent is positively affected by the increase
of infection from the infectious �ea and the pathogens in the environment. But it is also most
signi�cantly affected by the infection they transmit to one another.

Figure 40: Effect of increased number of infected Human and Rodent.

Figure 40 shows the effect that infectious human and rodent have to one another. The �gure
shows a substantial effect that infectious rodent (plus other domestic animal) has to the infected
human population and vice versa.

Figure 41: Effect of increased number of Pathogens in the environment to Human and Rodent.
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When the environment is favorable, the pathogens grows in the natural condition. Pathogens in
soil or air may infect a susceptible individuals upon a successful and adequate contact. Figure
41 shows the effects in the number of infected human and rodent as the number of pathogens
in the environment increases. The prominence of A as the potential plague transmission agent
depend solely on the weather condition. That is to say, when planning on the control strategies
of plague disease especially when it is in pneumonic form much consideration should be on
whether the condition is favorable or not for the pathogens to grow.

5.6.2 Sensitivity and Elasticity analysis of R0,

We use sensitivity analysis to determine how the basic reproduction number (R0 ) relates to
changes in the parameters of the model. We also quantify the relative change in R0 in response
to the change in a parameter using the elasticity analysis. We use procedures described by
Hartemink (2009) to study the sensitivity and elasticity of the basic reproduction number R0 to
the changes in elements kij or to the parameters in their expression.

Sensitivity

We de�ne the sensitivity sij of a matrix K as the change in the basic reproduction number
(R0) in this case is the maximum modulus of the eigenvalues of the matrix K due to change in
elements kij given by:

sij =
@R0

@kij
(46)

From the values sij we can forms a sensitivity matrix Sij , obtained from the left and right
eigenvectors of the next generation matrix corresponding to its dominant eigenvalue (Caswell,
2001).

The sensitivity of R0 with respect to individual parameters s(�) is computed as:

s(�) =
X

ij

@R0

@kij
@kij
@�

(47)

Elasticity

The elasticity eij of a matrix element kij may also be obtained by:

eij =
kij
R0

@R0

@kij
(48)
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For individual parameter the elasticity e(�) is given by

e(�) =
�
R0

X

ij

@R0

@kij
@kij
@�

(49)

Table 14 shows the sensitivity and elasticity of the basic reproduction number R0 for the given
parameter values.

Table 14: Sensitivity and elasticity of R0 for plague disease

Variable Sensitivity Index Elasticity

k21 4.592 0.0001
k22 56.467 1.123
k55 50.462 1.123
k17 202.805 0.318
k71 15.603 0.297
k27 64.41 0.072
k72 -1.776 -0.029
k57 -16.047 -0.017
k75 3.302 0.081
k47 43.174 0.061
k25 -5.136 -0.103
k54 -34.903 -0.004
k74 3.913 0.065

From the Table 14 we can see the most sensitive element is the expected number of new cases
of human infected with bubonic plague caused by one infected �ea k17. The most insensitive
element is the expected number of new cases of rodent infected with septicemic plague caused
by one infected untreated rodent with bubonic plague k54. The positive sign entails that in-
creasing (decreasing) of kij will result to the increase (decrease) the basic reproduction number.
When the sensitivity index is negative it means that increasing (decreasing) one element while
keeping the other constant decreases (increases) the value of basic reproduction number R0 and
hence decreases (increases) the persistence of plague disease. For example the sensitivity in-
dex of k74 = 3:913 indicates that increasing the expected number of new cases of �ea infested
with Yersinia pestis caused by one infected rodent with bubonic plague by 10% will as a result
increase the value of the basic reproduction number by 39%.

Figure 42 shows the the effect of the most sensitive element of the matrix K on the
basic reproduction number. It entails that increasing (decrease) the expected number of
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new cases of human infected with bubonic plague caused by one infected �ea k17 con-
sequently lead to the signi�cant increase (decrease) on the basic reproduction number.

Figure 42: Effect of the most sensitive k17 on the basic reproduction number

Figure 43, shows the effect of k72, k57, k25 and k54 on the basic reproduction number RO. We
can see that, the k72, k57, k25 and k54 experience unstable endemic equilibrium when the values
of k72 is between [0 155], k57 is between [0 15], k25 is between [0 220] and k54 is between [0 6]
respectively. It then stabilize as the value of k72, k57, k25 and k54 increases above the stated
interval. It is when the endemic is unstable where we can observe the sensitivity indices of k72,
k57, k25 and k54 are negative and positive at some points. But when it is stable the sensitivity
indices of each kij is positive. The results shows that when values of kij are positive, their
increase lead to the increase of the value of the basic reproduction number as the element kij
stands for expected number of new cases of i caused by one infected individual of j (Hartemink
et al., 2008).

(a) (b)
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(c) (d)

Figure 43: Effect of the most sensitive kij on the basic reproduction number.

The results also show that the expected number of new cases of human infected with bubonic
plague caused by one infected �ea is most sensitive to the basic reproduction number k17 de-
pends mostly on the adequate contact between the susceptible human and the �ea infested with
pathogens. And as seen in Table 14 the increase in the adequate contact rate between the in-
fected �ea IF and the susceptible human being (�fh) will not only affect k17 but the entire basic
reproduction number.

Machens et al. (2013) narrate that as we increase the adequate contact rate between the infected
individuals and the susceptible, the number of infected classes also increase. Figure 44 shows
the effect of the increased adequate contact rate between the �ea infested with pathogens and
the susceptible human being.

(a)
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(b) (c)

Figure 44: Effect of increased �fh on the basic reproduction number.

Elements with large sensitive indices (especially those which constitute the basic reproduction
number) should be considered �rst for the proper control strategy. Reducing the basic repro-
duction number in our case has the direct relation with reducing the individual element of the
matrix K. Thus in order to have a disease free community we should work on reducing the
number of individuals that an infected individual can affect in his/her entire life time. This is
possible by always making kij < 1 which in turn will reduce the basic reproduction number of
the plague disease.

Reducing the value of kij means touching several factors and parameters in the plague system
model. It mainly entails reducing the contact rate between the infected and the susceptible
individuals, reducing the infectious period of an individual and reducing the probability that
individuals survive the incubation period. The strategies to reduce the contact rates must be
based on the character of the pair of individuals under consideration . For example, we would
do so by reducing the contact rate between the �ea infested with pathogens and human or
rodent. The best strategy will be fumigation in order to kill the infected �eas. The killing of the
infected individuals in order to reduce contact rates may also work when it is between infected
rodent and human and between �ea and rodent. However when it is between human to human
or between infected human to rodent, �ea or the environment, fumigation may not be the best
control strategy. The best strategy here may be either education or isolation.

5.7 Conclusion

In this work, we have developed and analyzed the deterministic SEIR model with modi�cation
for plague disease. We found the model is well posed and de�ned in the feasible region where
disease free equilibrium points is found and the stability is examined. We use sensitivity and
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elasticity analysis and numerical simulation to study the effect of most sensitive kij elements
and the parameters to the transmission and spread of the disease.

The model analysis reveals that the expected number of secondary cases produced by a single
infected individual during the entire infectious period of that particular individual into a com-
pletely susceptible population depends on several kij . It then entails that in order to be able to
control the disease stakeholders should work on reducing the expected number of new cases
of human infected with septicemic plague caused by one infected human with bubonic plague
k21, the expected number of new cases of human infected with septicemic plague caused by
one infected human with septicemic plague k22, the expected number of new cases of human
infected with bubonic plague caused by one infected �ea k17, the expected number of new cases
of rodent infected with septicemic plague caused by one infected rodent with septicemic plague
k55.

The endemicity of the disease may also be reduced by reducing the expected number of new
cases of �ea infested with Yersinia pestis caused by one infected human with bubonic plague
k71, the expected number of new cases of human infected with septicemic plague caused by one
infected �ea k27, the expected number of new cases of �ea infested with Yersinia pestis caused
by one infected human with septicemic plague k72, the expected number of new cases of rodent
infected with septicemic plague caused by one infected �ea k57, the expected number of new
cases of �ea infested with Yersinia pestis caused by one infected rodent with septicemic plague
k75, the expected number of new cases of rodent infected with bubonic plague caused by one
infected �ea k47, the expected number of new cases of human infected with septicemic plague
caused by one infected rodent with septicemic plague k25, the expected number of new cases
of rodent infected with septicemic plague caused by one infected rodent with bubonic plague
k54 and the expected number of new cases of �ea infested with Yersinia pestis caused by one
infected rodent with bubonic plague k74.

From the analysis, it may be postulated that preventive measures, through reducing contact rates
between the infected and susceptible individuals is necessary in order to control the disease.
That is reduction of the contact rates will consequently reduce the transmission rates which in
turn will lead to lower prevalence of the plague disease.
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CHAPTER SIX

The Effect of Seasonal Weather Variation on the Dynamics of the Plague Disease 5

Abstract: Plague is an historic disease which is also known to be the most devastating diseases
ever occurred in human history, caused by gram -negative bacteria known as Yersinia pestis.
The disease is mostly affected by variations of weather conditions as it disturb the normal
behaviour of main plague disease transmission agents namely human beings, rodents, �eas
and pathogens in the environment. This in-turn changes the way they interact with each other
and ultimately lead to a periodic transmission of plague disease. In this paper we formulate a
periodic epidemic model system by incorporating seasonal transmission rate in order to study
the effect of seasonal weather variation on the dynamics of plague disease. We compute the
basic reproduction number of a proposed model. We then use numerical simulation to illustrate
the effect of different weather dependent parameters on the basic reproduction number. We are
able to deduce that infection rate, progression rates from primary forms of plague disease to
more severe forms of plague disease and the infectious �ea abundance affect to a large extent
the number of bubonic, septicemic and pneumonic plague infectives. We recommend that it is
more reasonable to consider these factors that have shown to have a signi�cant effect on RT for
effective control strategies.

Key words: Pneumonic plague; seasonal weather variation; Periodic-epidemic systems; Peri-
odic transmission; septicemic plague; Evolution operator of periodic system; bubonic plague;
Time averaged reproduction number; Periodic-force of infection

6.1 Introduction

Plague is the ancient disease caused by the bacterium Yersinia pestis and has had a splendid
effects on human societies throughout the history (Wagner et al., 2014). Dynamics of plague
disease is the result of complex interactions between human beings, rodent population, �ea
population and pathogens in the environment. Seasonal variation particularly temperature, hu-
midity, rainfall and precipitation greatly affect the normal transmission capacity of plague dis-
ease either by lowering it or rising it. It affects pathogen in the environment, �eas, rodents and
even human behavior by altering their normal immigration rate, death rate, survival rate and
infectious capability (Altizer et al., 2006).

5This chapter is based on a research paper: Rigobert C. Ngeleja, Livingstone S. Luboobi, and Yaw
Nkansah-Gyekye, �The Effect of Seasonal Weather Variation on the Dynamics of the Plague Disease,� Inter-
national Journal of Mathematics and Mathematical Sciences, vol. 2017, Article ID 5058085, 25 pages, 2017.
https://doi.org/10.1155/2017/5058085.
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6.1.1 Seasonality in �ea development stages and behavior

Flea’s survival is greatly affected by temperature and relative humidity (Cavanaugh and Mar-
shall, 1972). The ecto-thermic characteristic of �ea make them very sensitive to temperature
�uctuations. Xenopsylla cheopis is the primary vector �ea for Yersinia pestis. It is signi�cantly
affected by seasonal weather variation as most of its life stages depend on temperature, humid-
ity and precipitation. The rate of metamorphosis of this kind of �ea from egg to adult is also
regulated by temperature.

Flea larvae feed on almost any organic debris but mostly they feed on adult excreta which
consist of relatively undigested blood (Silverman et al., 1981). These adult fecal matter when
dried they falls from the host to serve as food for the larvae. Thus the availability of food (dried
�ea dirt) for a larvae to feed depends on the weather condition particularly temperature and
humidity. The larvae develop well in areas where the relative humidity greater than 75 percent
and the temperature between 210C and 320C (Zentko and Richman, 1997; Cavanaugh, 1971).
At constant temperature �ea becomes most sensitive to air saturation, and are massively killed
when the air saturation is insuf�ciency (Bacot and Martin, 1924). The fact that all immature
�ea stages occur outside the host; development rates of �ea increase with temperature until it
reaches a critical value which makes �ea most vulnerable. High temperature combined with
low humidity hinders �ea’s survival at immature stages (Gage et al., 2008).

The condition where relative humidity is below 50% is unfavorable for �ea growth. It is at this
condition the biting rate of �ea onto the infected human and rodent or of the infected �ea onto
the susceptible human and rodent is signi�cantly low. But when the relative humidity is 80%
the �ea becomes very active and as a result the biting rate and infection increase signi�cantly.
More over when temperature is above 27:50C the rapid disappearance of plague bacilli from
the �ea stomach occur, resulting in reduced rates of plague disease transmission. This in turn
reduce the �ea’s ef�ciency in its ability to transmit the plague bacillus to human beings and
rodents (Enscore et al., 2002; Brooks, 1917)

When �eas are in rodent burrows, their survival of immature stages is affected by soil moisture
that is partly controlled by outside precipitation (Eisen and Gage, 2009). As the way of getting
rid of detrimental moisture losses and temperature swings, rodent normally shift to start living
underground (Krasnov et al., 2001b). On the other hand, when attached with a high organic
load, excessively wet conditions in rodent burrows (e.g., relative humidity 95%) can stimulate
the growth of destructive fungi that diminishes �ea’s larval and egg survival (Parmenter et al.,
1999).
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Different studies justify the negative correlation between rainfall and plague epidemics. For
example Cavanaugh and Marshall (1972) reported that areas where drains are absent, or where
drainage is insuf�cient as a result of soil composition or impoundments of water, �ooding un-
questionably causes a drop in the �ea population. In areas with improved drainage, such as
those with sandy soils, the lessening of the �ea population is minimal. Precipitation also in-
�uence plague infection for it in�uences the concentration of rodents, �eas and humans in the
same shelter.

6.1.2 Seasonality in rodents

The direct effect posed on rodent population due to temperature change is minor. This is due to
the fact that rodents are homoeothermic and hence do not respond immediately to changes in
ambient temperatures (Korslund and Steen, 2006). Temperature indirectly affects the spread of
plague in rodent population in different ways as follows: at a low mean temperature of 100C the
bacteria within host (rodent) becomes very active as a result a large number of infected rodent
die before even the plague bacilli appear in their blood. At this particular temperature rodent
also lose the ability to infect other susceptible individuals.

Rainfall may pose positive or negative effect on the increase of rodent population depending on
it’s intensity (Eisen and Gage, 2009). A season of moderate rainfall may be considered to affect
positively the increase of rodent abundance but when the amount of rainfall is extremely heavy
it results in a tremendous rodent population decline (Roberts et al., 2008). When it is moderate
and upon a proper timing, rainfall may foster the increase of rodent population (Cavanaugh and
Marshall, 1972). This is due to the fact that rodent’s reproduction period normally follow wet
seasons (Jaksic and Lima, 2003; Meserve et al., 2001; Letnic et al., 2005). That is to say the
increase of rodent population during wet period is expected to be higher than during the dry
seasons. This clearly concur with the result in the study by Leirs et al. (1996), which narrates
that in Tanzania, rodent population densities show clear association with the annual rainfall
and its seasonal distribution. However when rainfall is of high intensity, it causes �ooding of
rodent burrows. Large number of rodents population die and the remaining ones normally move
from forest to the households where they can protect themselves (Gage et al., 2008; Dickman
et al., 1999; Cavanaugh and Marshall, 1972). In other cases, increased precipitation or drought
stalwartly disturb rodent population dynamics, as it deters food availability.
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6.1.3 Seasonality in pathogens in the environment

When the bacteria are in lungs, the transmission of Yersinia pestis is possible through various
ways: Contact transmission, in which one may be infected through physical contact with res-
piratory particles on the infected surface; Airborne transmission, which is through inhaling the
bacteria causing the disease through successive contact with the nose or mouth of an infected
individual; Respiratory particles, which is through respiratory droplets which is through shed-
ding of respiratory particles (i.e., droplets or aerosols) from an infected human or rodent into
the environment (Agar et al., 2009).

Extreme temperatures regularly are ruinous to the survival of pathogens causing plague. The
changes in temperature may lead to varying effects on the pathogens in the environment and
vectors that lives in an environment. When the mean temperature approaches the maximum
limit that can be endured by the pathogens, a small increase in temperature may be very danger-
ous to the pathogen survival. Conversely when pathogens are in the environment characterized
by low mean temperature, a small increase in temperature may result in increased development,
incubation and replication of the pathogen in the environment (Krasnov et al., 2001a, 2002).

Davis (1953) compared the seasonal incidence of plague with usual atmospheric conditions in
particular temperature and rainfall. It was depicted that human plague is more frequent in warm
moist weather between 150C�270C than in hot dry (over 270C), or cold weather (under 150C).
Mitscherlich and Marth (2012) narrates that the solar exert a detrimental effect on bacterial
aerosol and the decay rate of Yersinia pestis is proportion to the increase of UV light.

The reports by Ayyadurai et al. (2008) and Mollaret (1964) justi�es the ability of the Yersinia
pestis to culture the organism from deep within contaminated soil. Eisen et al. (2008) was able
to show the great potential durability of Yersinia pestis in the soil substrate. The long duration
of their survival in the soil supports indirectly the virulence maintenance.

Yersinia pestics, exhibit a very slow growth at the temperature between 350C � 370C but they
grow very fast at the temperature 280C. They die very rapid if exposed to a UV light, temper-
ature exceeding 400C or when exposed to intensive desiccation (Nozadze et al., 2015; Koirala,
2006; Brubaker, 1972). Bacteria decrease their sensitivity when the level of humidity drops
below 76% (Mitscherlich and Marth, 2012).

When an infected individual coughs or sneezes, thousands of the bacteria are released in air
(Stenseth et al., 2008). The released respiratory particles may be large and heavy that they
can’t remain suspended in the air. When respiratory particles are large the transmission can
only occurs when these particles are expelled directly onto another close susceptible individual.
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In some cases the release of smaller respiratory particles may occur; this is when the airborne
transmission is possible. The smaller released particles are easily suspended in the air respired
(i.e., pass into the lower respiratory tract) (Bevelacqua and Stilp, 2009).

Relative humidity and temperature affect the transmission of yersinia pestis from one individual
to the other. Humidity affects the size of the respiratory particle (Meyer, 1961). When humidity
is low the large drops partially evaporate to create smaller, lighter drops that are more likely to
remain airborne for extended periods of time (Rose et al., 2003). This is to say, when the air is
suf�ciently dry, the large sized particles shrink to a size that favours long-range transport which
in turn leads to increased infection.

6.1.4 Seasonality in Human behavior

Human activities and behavior in plague-infected areas are also to be considered as important
determinants of plague transmission to and by humans (Hunter, 2003). When occurrences of
plague are due to human intrusions in natural plague areas, it is thus important to consider
season variation as a second order variable that in�uences disease incidence through human be-
havior. In Tanzania, drought and famine which are the result of lack of rainfall and temperature
�uctuation have a great impact to the farmers and pastoralists as it forces them to move from
one area to another searching for food for themselves and their cattle. These human intrusions
from one place to another may lead to the increase of plague disease transmission in rodents,
�eas, human population and pathogens in the environment.

6.2 Model Formulation

We describe the complex interaction that leads to plague disease transmission and use it to
formulate a model for the dynamics of the plague disease coupled with the effect of seasonal
weather variation in its transmission. The model includes four populations namely human be-
ings, rodents, �eas and pathogens in the environment. We generally assume that all individuals
from each population are susceptible to the disease, the recovered individuals confer tempo-
rary immunity and return to be susceptible again, the infectious are all individuals with either
bubonic plague, pneumonic or septicemic plague.
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6.2.1 Variables and Parameters used in the model

In this section we present variables and parameters, their description and their values as used
in the model. We obtained the parameter values from the literature that relate to this study,
the present information on plague disease and through estimation using sensitivity analysis and
simulations.

Table 15: Variables and their description for plague disease with weather variation.

Variable Description
SH Susceptible Human population
EH Exposed human population
IHB Infectious human population infected with with bubonic plague
IHS Infectious human population with septicemic plague
IHP Infectious human population with Pneumonic plague
RH Recovered Human population
SR Susceptible rodents
ER Exposed rodents
IRB Infectious rodents with bubonic plague
IRS Infectious rodents with septicemic plague
IRP Infectious rodents with pneumonic plague
SF Susceptible �eas
IF Infected �eas
A Pathogens in the soil/environment

Table 16: Parameters and their description for plague disease with weather variation.

Parameters Description Value Reference/Source
�rbf (t) Adequate contact rate: between IRB and �ea 0.1 Eisen et al. (2007)
�rsf (t) Adequate contact rate: between IRS and �ea 0.1 Eisen et al. (2007)
�fh (t) Adequate contact rate: between IF and human 0.0641 Eisen et al. (2007)
�f r (t) Adequate contact rate: between IF and rodent 0.0641 Eisen et al. (2007)
�hph (t) Adequate contact rate: between IHP and SH 0.39 Estimated
�hsh (t) Adequate contact rate: between IHS and SH 0.12 Estimated
�rbh (t) Adequate contact rate: between IRB and SH

�rph (t) Adequate contact rate:between IRP and SH 0.19 Estimated
�rsh (t) Adequate contact rate: between IRS and SH 0.21 Estimated
�1 Progression rate of SH to EH population 0.99 Estimated
�2 Progression rate out of EH to infectious state 0.23 Gani and Leach (2004)
�1�3 Progression rate out of IHB to IHP

�2�3 Progression rate out of IHB to RH

�3�3 Progression rate out of IHB to IHS

�1b Disease induced death rate of IHB 0.04 Keeling and Gilligan (2000a)
�4 Progression rate out of IHS to IHP and RH 0.06 Estimated
�1s Disease induced death rate of IHS 0.04 Estimated
�5 Progression rate out of IHP to RH 0.4 Gani and Leach (2004)
�1p Disease induced death rate of IHP 0.63 Kugeler et al. (2015)
1 Progression rate of SR to ER 0.92 Estimated

Continued on next page
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Table 16 � Continued from previous page
Parameters Description Value Reference/Source
�hbf (t) Adequate contact rate: between IHB and �ea 0.1 Eisen et al. (2007)
�hsf (t) Adequate contact rate: between IHS and �ea 0.1 Eisen et al. (2007)
�rpr (t) Adequate contact rate: between IRP and SR 0.9 Estimated
�rsr (t) Adequate contact rate: between IRS and SR 0.9 Estimated
�hpr (t) Adequate contact rate: between IHP and SR 0.00005 Estimated
�hsr (t) Adequate contact rate: between IHS and SR 0.00008 Estimated
2 The rate at which rodent become infectious 0.98 Estimated
3 Progression rate out of IRB to IRS and IRP 0.194 Tollenaere et al. (2010)
�3b Disease induced death rate of IRB 0.1 Estimated
4 Progression rate out of IRS to IRP 0.05 Estimated
�3s Disease induced death rate of IRS 73 Tollenaere et al. (2010)
�3p Disease induced death rate of IRP 0.14 Estimated
$ Progression rate of RH to SH 0.33 Kugeler et al. (2015)
�1 Natural death rate for Human being 0.04 Keeling and Gilligan (2000a)
�2 Natural death rate for Flea 0.2 Bacot and Martin (1924)
�3 Natural death rate for rodent 1 Morand and Harvey (2000)
!1(t) Adequate contact rate: A and Human being
!2(t) Adequate contact rate: A and rodent
�1(t) Recruitment rate of A by IHP 0.2 Estimated
�2(t) Recruitment rate of A by IRP 0.4 Estimated
�4 Natural death rate for Pathogens 0.1 Estimated
 1 Recruitment rate of human beings 0.09 Estimated
 2 Recruitment rate of �eas
 3 Recruitment rate of rodents

6.2.2 Model description

The human population is divided into six subgroups: the subgroup of people who have not
contracted the disease to be referred to as susceptible and denoted by SH but may get it if they
get into contact with IHS , IHP , IRS , IHP , IF or A, People who have the disease but haven’t
shown any symptom and incapable of transmitting the disease to be referred to as Exposed
and denoted by EH ; those who are infected and capable of transmitting the disease are divided
into three subgroups: there are those who have bubonic plague denoted by IHB, those with
septicemic plague denoted by IHS and those who have Pneumonic plague disease denoted by
IHP . The fraction of population in IHB if treated may recover and move to subgroup RH

otherwise they progress either to a septicemic disease infectives IHS , or to pneumonic plague
disease infective IHP or else they die. The population in the subgroup IHS if treated they
recover and progress to the subgroup RH and if not treated they progress and join subgroup
IHP otherwise they die. The population of the subgroup IHP is considered as a very dangerous
stage of plague disease, it is very fatal stage of plague disease with the fatality rate of about
100%, however if treated they recover and join subgroup RH otherwise they die. So the total
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human population N1 is as given by (1);

N1 = SH + EH + IHB + IHS + IHP +RH (1)

Fleas are divided into two sub-groups, those who have not contracted the disease but may get it
if they get in contact with infectious agent (rodent or human) referred to as susceptible �ea and
denoted by SF and those who are infected and are capable of transmitting the disease referred
to as infectives and denoted by IF . The total �ea population N2 is as given by (2)

N2 = SF + IF (2)

The rodents are divided into �ve sub-groups: those who have not contracted the disease but may
get it if they get in contact with IHS , IHP , IRS , IHP , IF or A, referred to as susceptible rodents
and denoted by SR; those who have the disease but haven’t shown any symptom and incapable
of transmitting the disease referred to as Exposed and denoted by ER, those who are infected
and capable of transmitting the disease are divided into three subgroups, there are those who
have bubonic plague denoted by IRB, those with septicemic plague denoted by IRS and those
who have Pneumonic plague IRP . The fraction of population in IRB may progress to either
a septicemic plague disease infectives IRS , or to preneumonic plague disease infectives IRP .
The rodent population in the subgroup IRS may either progress to preneumonic plague disease
infectives IRP otherwise they die. The population in the subgroup IRP is considered as a very
dangerous stage of plague disease and very fatal so the mortality due to disease in this subgroup
is approximated to be 100% . Then the total rodent population N3 is as given by (3)

N3 = SR + ER + IRB + IRS + IRP (3)

The individuals with pneumonic plague may release pathogens causing plague disease to the
environment denoted by A through coughing or sneezing. When the condition in soil/environ-
ment is favorable, pathogens may remain infectious in the environment for long time. When
a susceptible individual adequately interact with the environment infested with yersinia pestis
gets the disease even in the absence of any vector.

6.2.3 Description of interactions

The susceptible �eas in sub-group SF get Yersinia pestis bacteria through biting the infected
rodent IRB or IRS who are the primary reservoir for the bacteria and become infected at the
rates �rbf and �rsf respectively. Flea may also get the disease when they bite the infected
human being with bubonic plague IHB or septicemic plague IHS at the rates �hbf and �hsf
respectively. Thus the �ea population gets plague infection with the force of infection given in
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(4)

G3(t) =
�hbf (t)IHB + �hsf (t)IHS

N1
+

�rbf (t)IRB + �rsf (t)IRS
N3

(4)

The human population may get the disease in one of the following ways: when the infected
�ea IF bites and infect the susceptible human being SH at a rate �fh, when they interact with
one another; this can be with either a person with pneumonic plague IHP through airborne
transmission or septicemic plague IHS through physical or sexual contact at the rates �hph and
�hsh, respectively. Other infection is through airborne transmission through interaction with
rodent infected with pneumonic plague IRP or through touching or eating the infected rodent
with septicemic plague IRS at rates of �rph and �rsh, respectively. Human beings may also
get the infection from the environment when they breath in the bacteria or physically contact
the infected material at the rate of !1. This is to say human population acquire plague disease
following effective contact with infected human, rodent, �ea and the environment with force of
infection G1 given by (5)

G1(t) =
�hph(t)IHP + �hsh(t)IHS

N1
+ �fh(t)

IF
N2

+
�rph(t)IRP + �rsh(t)IRS

N3
+ !1(t)A (5)

The subgroup SH , after the infection, progress and become latent to the disease at a rate �1.
After 2 to 7 days the sub-groups EH become infected into one of the three infectious classes
IHB, IHS or IHP (depending on the mode of transmission an individual is exposed to) and
capable of transmitting the disease. The proportional of EH progress and become infected
by bubonic plague IHB, septicemic plague IHS or Pneumonic plague IHP at the rate �2 and
proportional to �1, �2 or �3 respectively. If the individuals in the compartment IHB get treatment
they would recover and move to sub-group RH at a rate �3 otherwise they either progress to
subgroups IHP or IHS at a rate �3 or die either naturally at a rate �1 or due to the disease at
a rate �1b. The fraction of human with septicemic plague IHS if treated they recover at a rate
�4 and join RH otherwise they either progress to subgroup IHP at a rate �4 or die due to the
disease at a rate �1s or naturally at a rate �1. The compartments IHP if treated they recover at
a rate �5 otherwise they die either naturally at a rate �1 or due to the disease at a rate �1p. The
subgroup RH attain temporally immunity then return and become susceptible SH at a rate $.

The rodent population may get a disease in one of the following ways: when the infected �ea
IF bites and infect the susceptible rodent SR at a rate �fr, through interaction between rodent
themselves, which may be with rodent infected by pneumonic plague IRP or septicemic plague
IRS at the rates �rpr and �rsr, respectively. The other infection may be through interaction with
human infected with either pneumonic plague IHP , or septicemic plague IHS at a rates of �hpr
and �hsr, respectively. When the susceptible rodent suf�ciently interact with the pathogens in
environment through breathing in the bacteria or physically touch the infected material gets
the infections at the rate of !2. Rodent also gets the disease through adequate interaction with

163



Rodent, Human, Flea and Pathogens in the environment with force of infection G2 given by (6)

G2(t) =
�hpr(t)IHP + �hsr(t)IHS

N1
+ �fr(t)

IF
N2

+
�rpr(t)IRP + �rsr(t)IRS

N3
+ !2(t)A (6)

The subgroup SR, after the infection, they progress and become latent to the disease at a rate 1.
After 2 to 7 days the sub-groups ER become infected and capable of transmitting the disease,
the fraction of it progress and become infected by bubonic plague IRB, septicemic plague IRS
or Pneumonic plague IRP at the rate 2 and proportional to �1,�2 or �3 respectively. The rodent
in subgroup IRB may either progress to subgroups IRP or IRS at a rate 3 or die either naturally
at a rate �3 or due to the disease at a rate �3b. The compartment IRS may either progress to IRP
at a rate 4 or die due to a disease at a rate �3s or naturally at a rate �3 and the compartments
IRP die either naturally at a rate �3 or due to the disease at a rate �3p.

With regard to the pathogens in the environment, we assume that the adequate interaction with
SH and SR has a negligible effect on the dynamics of pathogens population size in the envi-
ronment. The pathogens in the environment are populated at a constant rate �4. The infected
human with pneumonic plague IHP and Rodent with pneumonic plague IRP also populate the
environment A with the bacteria at the rate �1 and �2 respectively. Thus the environment is
populated with pathogens causing plague disease with the force of infection G4 given by (7)

G4(t) = �4(t) + �1(t)
IHP
N1

+ �2(t)
IRP
N3

(7)

The pathogens within the environment suffer natural mortality at a rate �4. Human population
in sub-groups SH and EH , �ea population in sub-group SF and rodent population in sub-groups
SR and ER suffer natural mortality at rates �1; �2 and �3 respectively. The compartments IHB,
IHS , IHP , IF , IRB, IRS and IRP suffer both natural death at the rates �1; �2 and �3 and disease
induced mortality at rates �1b, �1s, �1p, �2, �3b, �3s and �3p respectively. Human, Flea and rodent
are recruited at the rate  1,  2 and  3 respectively.

6.2.4 Model Equations for Plague Disease

Now we assume that the variation of infection capability from one individual to the other, mi-
gration of individuals from one place to another, recruitment and death rates of individuals in
different stages due to seasonal weather variation affect only the rate at which the disease is
transmitted from one infected individuals to the other. We now use the variables and parameters
and their description given in Table 15 and Table 16 and the description of interactions we drive
the following system of differential equations as given in (8) - (11).
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Human beings

dSH
dt

=  1 +$RH � �1G1(t)SH � �1SH ; (8a)

dEH
dt

= �1G1(t)SH � �2EH � �1EH ; (8b)

dIHB
dt

= �2�2EH � �3IHB � (�1 + �1b)IHB; (8c)

dIHS
dt

= �3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS; (8d)

dIHP
dt

= �2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP ; (8e)

dRH

dt
= �3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH : (8f)

Rodents

dSR
dt

=  3 � 1G2(t)SR � �3SR; (9a)

dER
dt

= 1G2(t)SR � 2ER � �3ER; (9b)

dIRB
dt

= 2�3ER � 3IRB � (�3 + �3b)IRB; (9c)

dIRS
dt

= 2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS; (9d)

dIRP
dt

= 2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ; (9e)

Fleas

dSF
dt

=  2s � �G3(t)SF � �2SF ; (10a)

dIF
dt

= �G3(t)SF � (�2 + �2)IF (10b)

Pathogens
dA
dt

= �4(t) +
�1(t)IHP
N1

+
�3(t)IRP
N3

� �4(t)A: (11)

6.3 Basic properties of the model

In this section, we discuss the feasible region and positivity of the plague disease model. For
convenience purpose and easy presentation of the result we letC denote all continuous functions
on the real line. If f is a periodic function in C then we use f for the average value of f on time
interval [0; T ] de�ned by (12).

f =
1
T

Z T

0
f(t)dt (12)

for a continuous T - periodic function f(t).
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6.3.1 Invariant region

Plague disease affects Human, Rodent, Flea and pathogens in the environment populations. For
the possible modeling process all state variables and parameters of the model must be non-
negative for 8t � 0. We thus need to verify whether the solution of the model system (8) - (11)
are in suitable feasible region where all state variables are positive. Inspired by Dumont et al.
(2008) and Mpeshe et al. (2014) we �rst write the system (8) - (11) in the following compact
form

dX
dt

= A(x)X + F (13)

whereX = (SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A)T ,A(x) is a 14�14
matrix and F is a column vector.

We then have

A(x) =

 
A11 A12

A21 A22

!

(14)

where

A11 =

0

BBBBB@

�g1 0 0 0 0 $ 0
�1G1(t) �(�2 + �1) 0 0 0 0 0

0 �2�2 �a1 0 0 0 0
0 �2�3 �3�3 �a2 0 0 0
0 �2�1 �1�3 �4� �a3 0 0
0 0 �2�3 �4(1� �) �5 �($ + �1) 0
0 0 0 0 0 0 �g2

1

CCCCCA
(15)

A12 =

0

BBBB@

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1

CCCCA
(16)

A22 =

0

BBBBBB@

�(2 + �3) 0 0 0 0 0 0
2�3 �a4 0 0 0 0 0
2�2 3(1� �) �a5 0 0 0 0
2�1 3� 4 �(�3 + �3p) 0 0 0

0 0 0 0 �g3 0 0
0 0 0 0 �G3(t) �(�2 + �2) 0
0 0 0 �2(t)

N3
0 0 ��4

1

CCCCCCA
(17)

A21 =

0

BBBBB@

0 0 0 0 0 0 1G2(t)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 �1(t)

N1
0 0 0 0

1

CCCCCA
(18)
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and
F = ( 1; 0; 0; 0; 0; 0;  3; 0; 0; 0; 0;  2s; 0; �4)T

where a1 = (�3 + �1 + �1b), a2 = (�4 + �1 + �1s), a3 = (�5 + �1 + �1p), a4 = (3 + �3 + �3b),
a5 = (4 + �3 + �3s), g1 = (�1G1(t) + �1), g2 = (1G2(t) + �3) and g3 = (�G3(t) + �2).

Now from sub-matrix A11, A12, A21 and A22 we can deduce that matrix A(x) is a Metzler
matrix such that all its off-diagonal elements are non-negative 8x 2 R14

+ and F � 0 is Lipschitz
continuous. Thus the feasible region for the model system (8)-(11) is the set

� =
�

(SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A) � 0 2 R14
+
	

This means that any trajectory of the system starting from an initial state in the positive orthant
of R14

+ remains forever in �.

6.3.2 Positivity of the solution

We need to show that all variables and parameters of the model are non-negative 8t � 0. We
now solve the equations of the system in their patches for testing the positivity. We found that
by letting the initial values of the systems (8), (9), (10) and (11) be: SH(0) > 0, SR(0) >
0,SF (0) > 0 and A0 � 0 EH(0) � 0, IHB(0) � 0, IHS(0) � 0, IHP (0) � 0, RH(0) � 0,
ER(0) � 0, IRB(0) � 0, IRS(0) � 0, IRP (0) � 0, IF (0) � 0. Then in the solution set SH(t),
SR(t), SF (t), A(t), EH(t), IHB(t), IHS(t), IHP (t), RH(t), ER(t), IRB(t), IRS(t), IRP (t) and
IF (t) are non-negative 8t � 0.

6.4 Model Analysis

6.4.1 Disease free equilibrium solution

The periodic model system (8) - (11) with non-negative, continuous periodic functions has
disease free equilibrium solution in which we consider equations (19), (20) and (21)

dSH
dt

=  1 � �1SH (19)

dSR
dt

=  3 � �3SR (20)

dSF
dt

=  2s � �2SF (21)
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Now given initial conditions SH = SH0 2 R+, SR = SR0 2 R+ and SF = SF0 2 R+ for (19),
(20) and (21) respectively, we will have

SH =
 1

�1
+
�
SH0 �

 1

�1

�
e��1t (22)

SR =
 3

�3
+
�
SR0 �

 3

�3

�
e��3t (23)

SR =
 2s

�2
+
�
SF0 �

 2s

�2

�
e��2t (24)

As t �! 1 (19), (20) and (21) admit unique solution SH �  1
�1

, SR �  3
�3

and SF �  2s
�2

respectively, which is globally attractive in R3
+.

To �nd the disease free equilibrium point we set the derivatives of the system (8)-(11) equal
zero. Then the model system has disease free solution which is obtained by setting IHB =
IHS = IHP = EH = RH = 0, IRB = IRS = IRP = ER = 0, IF = 0 and A = 0 for
human, Rodent, Flea and pathogen system respectively. Hence system (8)-(11) has a disease
free equilibrium point

E0(S0
H ; E0

H ; I0
HB; I0

HS; I0
HP ; R0

H ; S0
R; E0

R; I0
RB; I0

RS; I0
RP ; S0

F ; I0
F ; A0)

=
�
 1
�1
; 0; 0; 0; 0; 0;  3

�3
; 0; 0; 0; 0;  2s

�2
; 0; 0

� (25)

6.5 Basic Reproduction Number

Let (Rk, Rk) be the standard ordered k-dimensional Euclidean space with a norm k : k. For
u; v 2 Rk we write u � v provided u� v 2 Rk+, u > v provided u� v 2 Rk+ n f0g, and u� v
if u� v 2 Int(Rk+).

Now let A(t) be the continuous, cooperative, irreducible, and T-periodic k � k matrix function
with period T > 0, �A(:)(t) be the fundamental solution matrix of the linear ordinary differential
system

dx
dt

= A(t)x; (26)

and �(�A(:)(T )) be the spectral radius of �A(:)(T ). By Aronsson and Kellogg (1978) it follows
that �A(:)(t) is a matrix with all elements positive for each t > 0. By the Perron Frobenius
theorem, �(�A(:)(T )) is the principal eigenvalue of �A(:)(t) in the sense that it is simple and
admits an eigenvector v� � 0. The following result is important for our subsequent comparison
argument

Proposition 1. let � = 1
T ln(�(�A(T ))), and then there exist a positive , T-periodic function v(t)

such that e�tv(t) is a solution of x0 = A(t)x

168



Proof. Let v� � 0 be the eigenvector associated with the spectral radius ��A(:)(T )

By the change of variable
x(t) = e�tv(t)

the system 26 becomes
dv
dt

= A(t)v � �v = (A(t)� �I)v (27)

where I is an identity matrix.
Thus v(t) = �(A(:)��I)(t)v� is a positive solution of (27). We can easily see that

e�t�(A(:)��I)(t) = �A(:)(t)

Moreover

v(T ) = �(A(:)��I)(t)v� = e��T�A(:)(T )v� = e��T�(�A(:)(T ))v� = v� = v(0)

Thus, v(t) is a positive T-periodic solution of (27) and hence, x(t) = e�tv(t) is a solution of
(26)

The plague disease model system (8)- (11) has unique disease free equilibrium point given in
(25)

We consider a heterogeneous population whose individuals are distinguishable by stage of the
disease, and hence identi�able and put into epidemiological compartments which are SH , EH ,
IHB, IHS , IHP , RH SR, ER, IRB, IRS , IRP , SF , IF and A. We sort the compartments so that
the �rst m compartments correspond to infected individuals.
We now let
Fi(x) be the rate of appearance of new infections in the ith compartments;
V+
i (x) be the rate of transfer of individuals into compartment i by all other means, other than

the epidemic;
V�i (x) be the rate of transfer of individuals out of compartment i.

Then the plague disease transmission model in (8) - (11) is governed by a periodic ordinary
differential system given in (28)

dxi
dt

= Fi(t; x)� Vi(t; x) , fi(t; x); (28)

where Vi(x) = V�i (x)� V+
i (x).

We rearrange the system by sorting the infectious classes (EH , IHB, IHS , IHP , ER, IRB, IRS ,
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IRP , IF , A) come �rst. We then have:

F(x) =

0

BBBBBBBBBB@

�1G1(t)SH
0
0
0

1G2(t)SR
0
0
0

�G3(t)SR
0

1

CCCCCCCCCCA

(29)

V(x) =

0

BBBBBBBBBBB@

�2EH + �1EH
(�3 + �1 + �1b)IHB � �2�2EH

(�4 + �1 + �1s)IHS � �3�3IHB � �2�3EH
(�5 + �1 + �1p)IHP � �2�1EH � �3�1IHB � �4�IHS

2ER + �3ER
(3 + �3 + �3b)IRB � 2�3ER

(4 + �3 + �3s)IRS � 2�2ER � 3(1� �)IRB
(�3 + �3p)IRP � 2�1Er � 3�IRB � 4IRS

(�2 + �2)IF
�4A� �1(t)IHP

N1
� �2(t)IRP

N3
+ �4

1

CCCCCCCCCCCA

(30)

Then we have:
F (t) =

�
@Fi
@xj

(x0)
�
; V (t) =

�
@Vi
@xj

(x0)
�

(31)

with 1 � i; j � 10.

Now using (31) the matrices F and V as given below:

F (x) =

0

BBBBBBBBBBB@

0 0 �1�hsh �1�hph 0 0 �1�rshS0
H

N3

�1�rphS0
H

N3

�1�fhS0
H

N2
�1!1S0

H
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1�hsrS0

R
N1

1�hprS0
R

N1
0 0 1�rsr 1�rpr

1�frS0
R

N2
1!2S0

R
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 ��hbfS0

F
N1

��hsfS0
F

N1
0 0 ��rbfS0

F
N3

��rsfS0
F

N3
0 0 0

0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCA

(32)

V (x) =
�v11 v12v21 v22

�
(33)

where:

V11 =

0

B@

�2 + �1 0 0 0 0
��2�2 �3 + �1 + �1b 0 0 0
��2�3 ��3�3 �4 + �1 + �1s 0 0
��2�1 ��3�1 ��4� �5 + �1 + �1p 0

0 0 0 0 2 +mu3

1

CA
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V22 =

0

BB@

3 + �3 + �3b 0 0 0 0 0
�3(1� �) 4 + �3 + �3s 0 0 0
�3� �4 �3 + �3p 0 0

0 0 0 �2 + �2 0
0 0 � �2

N3
0 �4

1

CCA

V21 =

0

BB@

0 0 0 0 �2�3
0 0 0 0 �2�2
0 0 0 0 �2�1
0 0 0 0 0
0 0 0 � �1

N1
0

1

CCA

V12 =

0

B@

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1

CA

Following the setting by Wang and Zhao (2008) and Van den Driessche and Watmough (2002)
for epidemic models we check the condition (A1) - (A7) for plague disease epidemic model.
The system (8) - (11) is equivalent to periodic ordinary differential system (28). Now consider-
ing this system we can easily see that the condition (A1) - (A5) stated below are satis�ed.

A1 Since each function represents a directed transfer of individuals (human, rodent, �ea and
pathogens in the environment), they are all non-negative. Thus, for each 1 � i � n the
function Fi(t; x), V+

i (t; x) and V�i (t; x) are non-negative and continuous on R� Rn+ and
continuously differentiable with respect to x

A2 There is a real number T > 0 such that for each 1 � i � n the functionsFi(t; x), V+
i (t; x)

and V�i (t; x) are T - periodic in t

A3 If a compartment is empty, there will be no transfer of individuals out of the compartment
any means. That is to say if xi = 0 then V�i = 0. In particular if x 2 Xs, then V�i = 0
for i = 1; : : : ;m

A4 The incidence of infection for uninfected compartments is zero. That is to say Fi = 0 for
i > m.

A5 If the population is disease free then the population will remain free of disease. Thus if
x 2 Xs, then Fi = 0 and V+

i = 0 for i = 1; : : : ;m.

We know that the system (28) has disease free periodic solution given in (25). Now we
de�ne f(t; x(t)) = F(t; x(t)) � V(t; x(t)) and M(t) =

�
@fi(ti;E0)

@xj

�
, 11 � i; j � 14

where fi(t; x(t)) and xi is the i � th component of f(t; x(t)) and x respectively. Now
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from (29) and (30) we obtain a 4� 4 matrix given in (34)

A(t) =

0

BB@

��1 $ 0 0
0 �($ + �1) 0 0

0 0 ��3 0

0 0 0 ��2

1

CCA (34)

We then let �A(:)(t) be the monodromy matrix of the linear T - periodic system dz
dt =

A(t)z. Then ��A(:)(T ) < 1 which implies that E0 is linearly asymptotically stable in the
in the disease free subspace Xs = fx � 0 : xi = 0;8i = 1 : : :mg where i = 1 : : :m are
the infected compartments. Thus the condition (A6) stated below holds.

A6 The disease free periodic solution is asymptotically stable in a disease free subspace Xs

that is ��A(:)(T ) < 1 where ��A(:)(T ) is the principal eigenvalue of �A(:)(t).

Next we set F (t) and V (t) are two 10� 10 matrices de�ned by (31), then using (29) and
(30) we get matrices F (t) and V (t) given in (32) and (33) respectively. We can further
see that matrix F (t) is non-negative, and �V (t) is cooperative in the sense that the off-
diagonal elements are non negative. Let Y (t; s); t � s, be the evolution operator of our
T -periodic system

dy
dt

= �V (t)y: (35)

That is for each s 2 R the 10� 10 matrix Y (t; s) satis�es

dY (t; s)
dt

= �V (t)Y (t; s);8t � s; Y (s; s) = Id (36)

where Id is a 10 � 10 identity matrix. Thus the monodromy matrix �V (t) of (35) equals
Y (t; 0); t � 0. Therefore the condition (A7) stated below holds.

A7 The evolution of individuals in the infectious compartments decays exponentially due to
natural and disease induced mortalities. Thus ��V (T ) < 1

Now using the standard theory of linear periodic system by Hale (1980) there exist K > 0 and
} > 0 such that

k Y (t; s) k� Ke�}(t�s); 8t � s; s 2 R: (37)

We then have

k Y (t; t� a)F (t� a) k� K k F (t� a) k e�}a; 8t 2 R; a 2 [0;1) (38)

Considering the periodic environment we suppose that �(s), T - periodic in s, is the distribution
of the new infection at a rate F (s)�(s) produced by the infected individual who were introduced
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at time s. Given t � s then Y (t; s)F (s)�(s) yields the distribution of those infected individuals
who were newly infected at time s and remain in the infected class at t. We then have

	(t) =
Z t

�1
Y (t; s)F (s)�(s)ds =

Z 1

0
Y (t; t� a)F (t� a)�(t� a)da (39)

which is the distribution of accumulative new infections at time t produced by all those infected
individual �(s) introduce at previous time s to t (s � t).

Let CT be the ordered Banach space of all T - periodic function from R to Rn, which is equipped
with the maximum norm k : k1 and the positive cone C+

T = f� 2 CT�(t) � 0; t 2 Rg. De�ne
a linear operator L : CT �! CT by

(L�)(t) =
Z 1

0
Y (t; t� a)F (t� a)�(t� a)da; 8t 2 R; � 2 CT (40)

Now by Wang and Zhao (2008), Diekmann et al. (1990) and Van den Driessche and Watmough
(2002) we name L as the next infection operator, then the basic reproduction number RT of the
periodic system (8) - (11) is given (41).

RT = �(L) (41)

where �(L) is the spectral radius of L.

6.5.1 Characterization of RT

In this subsection, we investigate whether the basic reproduction number in our periodic system
can characterize the threshold of the disease invasion. To do this we consider the following
linear T -periodic equation

dw
dt

=
�
�V (t) +

F (t)
�

�
w; 8t 2 R (42)

with parameter � 2 (0;1). LetW (t; s; �); t � s; s 2 R, be the evolution operator of the system
(42) on R10. We can clearly see that �F�V (t) = W (t; 0; 1), 8t � 0. Considering matrix (32)
and (33) we note that for each � 2 (0;1), all off-diagonal element of matrix �V (t) + F (t)

� are
non negative (cooperative matrix). It follows that the linear operatorW (t; s; �) is positive in R10

for each t � s, s 2 R. Now using Perron-Forobenius theorem by Smith and Waltman (1995) it
entails that �(W (T; 0; �)) is an eigen value ofW (T; 0; �) with a non-negative eigenvector. Also
using matrix similarity concept by Shores (2007) we can easily verify that matrixW (s+T; 0; �)
is similar to the matrix W (T; 0; �) and hence �(W (s+T; 0; �)) = �(W (T; 0; �)) for any s 2 R

where �(D) is a spectrum of the matrix D.

173



Proposition 2 ((Wang and Zhao, 2008)). We let (A1)� (A7) holds for system (8) - (11) then

(i) If �(W (T; 0; �)) = 1 has a positive solution �0, then �0 is an eigenvalue of L, and hence
RT > 0.

(ii) If RT > 0, then � = RT is the unique solution of �(W (T; 0; �)) = 1

(iii) RT = 0 if and only if �(W (T; 0; �)) < 18� > 0

This result shows that in order to �nd the basic reproduction number, we need to �nd the mon-
odromy matrix �F�V (t) of the system (42) and evaluate it. We then �nd the spectral radius
of �F�V (T ) and solve the equation �(�F�V (T )) = 1 for � which is the basic reproduction
number.

6.5.2 Computation of the Basic Reproduction Number

We compute a time-averaged basic reproduction number R0 using the next generation matrix
as outlined by Wesley and Allen (2009), Heesterbeek (2000) and Diekmann et al. (1990). The
method has the advantage over the usual next generation method in that, the steps to reach an
estimate of R0 and the matrix elements of the next-generation matrix have a clear biological
basis. It is easy to handle complex diseases like plague disease which has multiple transmission
roots from different infections agents.

To do this, we �rst categorize individuals by their state at the moment they become infected
(type at infection). These types-at-infection refers speci�cally to the birth of the infection in the
individual. These categories (type at infection) differs in the way they transmit plague disease
which in-turn differentiate their ability to produce secondary cases.

In our case, we categorize the individuals into eight states and label them as follows: Human
infected with bubonic plague (type 1), Human infected with septsemic plague (type 2), Human
infected with pneumonic plague (type 3), Rodent infected with bubonic plague (type 4), Rodent
infected with septcemic plague (type 5), Rodent infected with pneumonic plague (type 6) Flea
infested with pathogens (type 7) and the Pathogens in the environment (type 8).

We assume and label individual with bubonic plague as stage one of the disease, septsemic
plague as stage two and pneumonic plague as stage three. We also assume that when an indi-
vidual in stage one graduates to stage two we only consider the current stage and ignore the
latter. We assume that the infection only goes in ascending direction that is from stage one to
two, or two to three, but not in the reverse of it.
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Since the system has eight types-at-infection, the next-generation matrix, K, will be a 8 � 8
matrix with elements kij’s. Each of the element kij stands for expected number of new cases of
i caused by one infected individual of j. For example k11 is the expected number of new cases
of human infected with bubonic plague caused by one infected human with bubonic plague.

We now de�ne a matrix K whose entries are kij . The resulting next generation matrix is as
given in (43).

K =

0

BBBBBB@

k11 k12 k13 k14 k15 k16 k17 k18
k21 k22 k23 k24 k25 k26 k27 k28
k31 k32 k33 k34 k35 k36 k37 k38
k41 k42 k43 k44 k45 k46 k47 k48
k51 k52 k53 k54 k55 k56 k57 k58
k61 k62 k63 k64 k65 k66 k67 k68
k71 k72 k73 k74 k75 k76 k77 k78
k81 k82 k83 k84 k85 k86 k87 k88

1

CCCCCCA
(43)

Then, R0 = �(K) where �(K) is spectral radius of K.

Some elements equal 0 because not all types of infections cause all other types of infection.
Example human with bubonic plague IHB (type at infection 1) does not produce type at infec-
tion 1 (human infected with bubonic plague), 4 (rodent infected with bubonic plague), 5 (rodent
infected with septicemic plague), 6 (rodent infected with pneumonic plague) and 8 (pathogens
in the environment). This means that k11, k14, k15, k16 and k18 are 0. The type at infection 2 (hu-
man being infected with septicemic plague) also does not produce Type at infection 1 (human
being infected with bubonic plague), 4(rodent infected with bubonic plague), 6 (rodent infected
with pneumonic plague) and 8(Pathogens in the environment). This also means that k21, k24,
k26 and k28 are zero (0). The type at infection 3 does not produce type at infection 1(human
being infected with bubonic plague), 2 (human being infected with septicemic plague), 4 (ro-
dent infected with bubonic plague), 5 and 7 which means that k31, k32, k34, k35 and k37 are zero.
Type at infection 4 does not produce type at infection 1, 2, 3, 4 or 8 which means that k41, k42,
k43, k44 and k48 are zero. Type at infection 5 does not produce type at infection 1, 3, 4, and 8
then k51, k53, k54 and k58 are zero. The type at infection 6 does not produce type at infection 1,
2, 4, 5 and 7 thus k61, k62, k64, k65 and k67 are zero. Type at infection 7 also does not produce
type at infection 3, 6, 7,and 8 thus k73, k76, k77, and k78 are zero. And the type at infection 8
does not produce type at infection 1,2, 4,5, 7 and 8 which means that k81, k82, k84, k85, k87 and
k88 are zero. Incorporating these, we modify the matrix K as shown in matrix (44)
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K =

0

BBBBBB@

0 0 0 0 0 0 k17 0
k21 k22 0 0 k25 0 k27 0
k31 k32 k33 0 0 k36 0 k38
0 0 0 0 0 0 k47 0
0 0 0 k54 k55 0 k57 0
0 0 0 k64 k65 k66 0 k68
k71 k72 0 k74 k75 0 0 0
0 0 k83 0 0 k86 0 0

1

CCCCCCA
(44)

We will now explain the derivation of each matrix-elements in detail. We employ the deriva-
tion steps by Gail and Benichou (2000) to drive the expressions for kij . We mainly base our
derivation on the adequate contact rate between the infected individual type j and the suscepti-
ble individual type i, the expected duration of infection of individual type j and the probability
that the individual type j survive the duration between the latent stage to the time an individual
experience the onset clinical disease as in (45)

Kij =
�Effective

contact
Rate

�
�

 
Duration

of
infection

!

�

 
Probability that the
individual survive

the incubation period

!

(45)

The production of IHB, depend on probability that the susceptible �ea becomes infectious (�).
We also consider the rate at which IF adequately bites the susceptible human and the bite results
to a human infected with bubonic plague IHB at the average value of transmission rate �fh. The
total number of human infected with bubonic plague caused by one �ea infested with pathogens
is as given in (46).

k17 =
�

�
� + �2

�
�2�fh
�2 + �2

(46)

Septicemic plague in human may be produced in various way; progression of untreated hu-
man with bubonic plague to human with septcemic plague, adequate contact(including sexual
contact) between humans with septicemic plague, adequate contact between rodent and human
with septicemic plague and from the �ea infested with pathogens. We consider the progression
rate of infected human with bubonic to septicemic �3�3, the adequate contact (it may be sexual
contact ) rate between humans with septicemic plague, rodent infected with septicemic plague
and the infected �ea to human with septicemic plague at the average rates hsh, rsh and fh.
Then the number of human infected with septicemic plague from all the mentioned infectious
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agents is as given in (47a), (47b), (47c) and (47d).

k21 =
�2�3�2�3

(�2�2 + �1)(�1 + �3 + �1b)
(47a)

k22 =
�

�3�3

�3�3 + �1
+

�2�3

�2�3 + �1

�
�hsh

(�4 + �1 + �1s)
(47b)

k25 =
�

2�2

(2�2 + �3)
+

3(1� �)
3(1� �) + �3

�
�rsh

(4 + �3 + �3s)
(47c)

k27 =
�

�
� + �2

�
�1�fh
�2 + �2

(47d)

The proportions �1 and � of untreated IHB and IHS may progress and become IHP at the pro-
gression rates �3 and �4 respectively. We multiply the average period the IHB remain infected
with the rate at which they progress to IHP . IHP may also result from the airborne transmission
from the human or rodent with pneumonic plague at the average rate hph or rph respectively.
And through the direct interaction with the environment at the average rate !1. Then the total
number of human infected with pneumonic plague from the stated �ve sources is given in (48a),
(48b), (48c), (48d) and (48e)

k31 =
�2�3�2�1

(�2�2 + �1)(�3 + �1 + �1b)
(48a)

k32 =
�

�3�3

�3�3 + �1
+

�2�3

�2�3 + �1

�
�4�

�4 + �1 + �1s
(48b)

k33 =
�

�2�1

�2�1 + �1
+

�3�1

�3�1 + �1
+

�4�
�4�+ �1

�
�hph

�5 + �1 + �1p
(48c)

k36 =
�

2�1

2�1 + �3
+

3�
3�+ �3

+
4

4 + �3

�
�rph

�3 + �3p
(48d)

k38 =
�

�4

�4 + �4
+

�1

�1 + �4
+

�2

�2 + �4

�
!1

�4
(48e)

Production of number of rodent with bubonic plague IRB depend only on the �ea infested with
pathogens. The infection depends on the infection period of the �ea that survive the incubation
period and the proportion at which the adequate contact between infected �ea and susceptible
rodent causes bubonic plague at the average rate �3�fr as given in (49).

k47 =
�

�
� + �2

�
�3�fr
�2 + �2

(49)

The septicemic plague in rodent is produced in three ways; one is when infected rodent with
bubonic plague progresses and become septicemic plague infectives at the rate 3(1� �). Two,
is after adequate contact (it may also be a rodent eating or biting an infected individual) between
the susceptible rodent and a rodent infected with septicemic plague or human at the average rate

177



�rsr or �hsr respectively. Three is from the �ea infested with pathogens with the proportion that
the adequate contact between IF and the susceptible rodent results to IRS . The total number of
IRS infected from these infectious agent is as given in (50a), (50b), (50c) and (50d).

k52 =
�

�3�3

�3�3 + �1
+

�2�3

�2�3 + �1

�
�hsr

�4 + �1 + �1s
(50a)

k54 =
23�3(1� �)

(2�3 + �3)(3 + �3 + �3b)
(50b)

k55 =
�

2�2

(2�2 + �3)
+

3(1� �)
3(1� �) + �3

�
�rsr

4 + �3 + �3s
(50c)

k57 =
�

�
� + �2

�
�2�fr
�2 + �2

(50d)

IRP may be the result of airborne transmission between the susceptible rodent and the human
and rodent with pneumonic plague at the average rate �hpr and �rpr respectively. It may also
occur from the progression of untreated IRB and IRS at the rate 3 and 4 respectively. The
pathogens in environment may also cause IRP after the adequate interaction at the average rate
!2. Now the total number of IRB resulting from these interaction are in (51a), (51b), (51c),
(51d) and (51e).

k63 =
�

�2�1

�2�1 + �1
+

�3�1

�3�1 + �1
+

�4�
�4�+ �1

�
�hpr

�5 + �1 + �1p
(51a)

k64 =
23�3�

(2�3 + �3)(3 + �3 + �3b)
(51b)

k65 =
�

2�2

(2�2 + �3)
+

3(1� �)
3(1� �) + �3

�
4

4 + �3 + �3s
(51c)

k66 =
�

2�1

2�1 + �3
+

3�
3�+ �3

+
4

4 + �3

�
�rpr

�3 + �3p
(51d)

k68 =
�

�4

�4 + �4
+

�1

�1 + �4
+

�2

�2 + �4

�
!2

�4
(51e)

Flea are infested with pathogens from human and rodent infected with bubonic and septicemic
plague at the average rate hbf , hsf , rbf and rsf . The infection is dictated by the probability
that human and rodent with bubonic and septicemic plague survive the incubation period and
the adequate rates of contact. From these interaction we get the total number of infectious �ea
is as given in (52a), (52b), (52c) and (52d).

k71 =
�2�2�hbf

(�2�2 + �1)(�1 + �3 + �1b)
(52a)

k72 =
�

�3�3

�3�3 + �1
+

�2�3

�2�3 + �1

�
�hsf

�4 + �1 + �1s
(52b)

k74 =
2�3�rbf

(2�3 + �3)(3 + �3 + �3b)
(52c)

k75 =
�

2�2

(2�2 + �3)
+

3(1� �)
3(1� �) + �3

�
�rsf

4 + �3 + �3s
(52d)
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The pathogens are released in the environment at the average rates �1 and �1 from IHP and IRP
respectively. The released number of pathogens at a given time depends on the infectious period
of the rodent and human infected with pneumonic plague. And the probability that IHP and IRP
survive the incubation period. The total pathogens in soil/environment is as given in (53a) and
(53b).

k83 =
�

�2�1

�2�1 + �1
+

�3�1

�3�1 + �1
+

�4�
�4�+ �1

�
�1

�5 + �1 + �1p
(53a)

k86 =
�

2�1

2�1 + �3
+

3�
3�+ �3

+
4

4 + �3

�
�2

�3 + �3p
(53b)

Each element in the matrix K represent the expected number of secondary cases produced
by infected individual j during the entire infectious period of that particular individual into a
completely susceptible population i (Hartemink et al., 2008).

Basic Reproduction Number R0

We obtain the average basic reproduction number R0 by computing the maximum modulus of
the eigenvalues of the next-generation matrix K (Diekmann et al., 1990; Heesterbeek, 2000).
Now using Maple computing software package, the basic reproduction number is:

R0 =
1
T

Z T

0

k22(s) + k55(s)
4

+
1
2

s

A1 +
1

3 3
p

2
A4 +

A5

3A4
+

1
2

s

A2 �
1

3 3
p

2
A4 �

A5

3A4

+
A3

4
q
A1 + 1

3 3p2
A4 + A5

3A4

ds

in which:

A1 =
3#3 + 8#1

12
; A2 =

3#3 � 8#1

6
; A3 = 4#1#3 � #3

3 � 8#4

A4 =
1

3 3
p

2
((2#3

1 � 72#2#1 � 9#3#4#1 + 27#2
4 + 27#2

3#2))+

((2#3
1 � 72#2#1 � 9#3#4#1 + 27#2

4 + 27#2
3#

2
2 � 4(#2

1 + 12#2 � 3#3#4)3)
1
3 )

1
2

A5 = 3
p

2(#2
1 + 12#2 � 3#3#4)

where

#1 = k22(s)k55(s)� k17(s)k71(s)� k27(s)k72(s)� k57(s)k75(s)

#2 = k17(s)k55(s)(k17(s)k71(s) + k21(s)k72(s))� k47(s)(k25(s)k54(s)k72(s)

+ k22(s)(k55(s)k74(s) + k54(s)k75(s)))

#3 = �k22(s)� k55(s)

#4 = (k22(s) + k55(s))(k17(s)k71(s) + k47(s)k74(s))� k72(s)(k17(s)k21(s)� k27(s)k55(s)

+ k25(s)k57(s))� k75(s)(k47(s)k54(s)� k22(s)k57(s))
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Since the system has multiple infectious types from multiple hosts then the next generation ma-
trix produce the average value of the geometric mean of the number of infections per generation
and the the basic reproduction number is the average number of secondary infections (Li and
Blakeley, 2011). It is shown that the basic reproduction number of plague disease depends on
the expected number of new cases of human infected with bubonic plague caused by one in-
fected �ea (k17), the expected number of new cases of human infected with septicemic plague
caused by one infected human with bubonic plague (k21), the expected number of new cases of
human infected with septicemic plague caused by one infected human with septicemic plague
(k22 ), the expected number of new cases of rodent infected with bubonic plague caused by one
infected �ea (k47), the expected number of new cases of rodent infected with septicemic plague
caused by one infected rodent with bubonic plague (k54 ), the expected number of new cases of
rodent infected with septicemic plague caused by one infected rodent with septicemic plague
(k55), the expected number of new cases of rodent infected with septicemic plague caused by
one infected �ea (k57), the expected number of new cases of of new cases of �ea infested with
Yersinia pestis caused by one infected human with bubonic plague (k71), the expected number
of new cases of �ea infested with Yersinia pestis caused by one infected human with septicemic
plague (k72), the expected number of new cases of �ea infested with Yersinia pestis caused by
one infected rodent with bubonic plague (k74) and the expected number of new cases of �ea
infested with Yersinia pestis caused by one infected rodent with septicemic plague(k75). The
result may also be interpreted as: among all elements of the matrix K, the kij , that appear in
RO gives more signi�cant involvement in the dynamics and spread of plague disease.

6.6 Numerical Results and Discussion

Here we use the parameters values of model system (8) - (11) given in Table 16 to study the
transmission trend of plague disease. Simulation results are given to show the effect of different
parameters on the periodic reproduction number. We also chose temperature data obtained
from Tanga region from January to December 2013 to show the seasonal distribution in the
the number of secondary cases of plague infections. It is observed that simulation results from
time averaged seasonal parameters and those seasonal parameters treated mathematically as
sinusoidal functions matches the real seasonal �uctuation data (Temperature).

Results shows that the increase in number of individuals infected with bubonic plague, to a large
extent affects the increases in number of individuals with septicemic and pneumonic plague
disease. This is due to the fact that, individual with bubonic plague progresses and become
either septicemic or pneumonic plague infectives. This in turn leads to the signi�cant increase
of plague disease transmission rate and the average number of secondary infections. Figure 46
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and Fig. 45 show how the progression rates from individuals with bubonic plague to individuals
with septicemic plague affects the average number of secondary infections in human beings and
rodent respectively. It is illustrated that the increase of human beings and Rodents progressing
to become septicemic plague infectives, affects the disease dynamics by increasing the average
number of secondary infections. We see similar result when we evaluate the periodic reproduc-
tion number basing on the temperature data from Tanga region (Sub-Fig 45c) and (Sub-Fig 46c)
and time averaged parameters (Sub-Fig 45b) and (Sub-Fig 46b) for human beings and rodents
respectively. These �ndings necessitate the need for early treatment of plague disease infectives
especially the primary forms (Bubonic and septicemic plague) before they progress to a highly
fatal and fast spreading plague forms like pneumonic plague disease. It is thus important for the
government and other health stake holders to ensure the availability of effective plague disease
treatment especially in high risk areas.

(a) (b)

(c)

Figure 45: Effect of progression rates from IHB to IHS on the Periodic reproduction number.
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(a) (b)

(c)

Figure 46: Effect of progression rates from IRB to IRS on the Periodic reproduction number.

Increase of plague disease transmission through �ea bite in Human beings and Rodents popula-
tions alter the whole dynamics of plague disease. Results in Fig. 47 and Fig. 48 shows the effect
of infection from infectious �ea to Human beings with bubonic and septicemic plague on the
average number of secondary infections. The infection from �ea to rodents with bubonic and
septicemic plague disease also shows the signi�cant effect on RT as illustrated in Fig. 49 and
Fig. 50 respectively. The results generally shows that when the periodic infection rates from
�ea increases the infectious human beings and rodent increases as well, this in-turn affect the
general plague disease periodic transmission and spread. These results are in conjuncture with
what is observed when RT is evaluated using the temperature data and time averaged seasonal
parameter as in Sub-Fig. 47c and Sub-Fig. 47b and Sub-Fig. 49c and Sub-Fig. 49b for human
beings and rodents respectively
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(a) (b)

(c)

Figure 47: The effect of infection from IF to Human beings with bubonic plague on the Periodic

Reproduction Number.

(a) (b)

(c)
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Figure 48: The effect of infection from IF to Human beings with Septicemic plague on the Periodic

Reproduction Number.

(a) (b)

(c)

Figure 49: The effect of infection from IF to Rodents with bubonic plague on the Periodic

Reproduction Number.

(a) (b)
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(c)

Figure 50: The effect of infection from IF to rodents with septicemic plague on the Periodic

Reproduction Number.

The result calls attention for the need to control the number of infectious �ea and �ea population
in general as the way of controlling the plague disease. The study recommends that for the
appropriate and most effective way to control �ea population we �rst need to study the �ea’s
ecology and its local patterns of disease transmission. One of the most important and cost
effective strategy of controlling the vector �ea is environmental management strategies that can
reduce or eliminate vector breeding grounds. For example in residential areas people must be
educated to improve their surrounding environment in a way that do not fevers the survival and
growth of vector �ea. This may be through improving the design of water systems, improve
waste disposal and water storage, discourage deforestation and loss of biodiversity and living in
a well ventilated housing that is not close to animals.

There are also biological controls tools like bacterial larvicides and larvivorous �sh may be
used to control �ea population (Rozendaal, 1997). These control methods aim at killing vector
larvae without generating the ecological impacts as they don’t use chemicals. Another strategy
is using chemical methods, which mainly shorten the lifespan of vectors. These tools are such
as indoor residual sprays, space spraying, and use of chemical larvicides and adulticides. Since
most of these methods have side effects to the environmental ecology they are recommended
to be used when other safe strategies fail. Moreover, even though these chemicals are not
environmentally friendly we argue to the environmental stake holders to recommended the use
of chemical methods of vector control that reinforces linkages between health and environment.

Reducing the number of �ea population will reduce the infection rates to human beings and
rodents and ultimately reduce the number of secondary infections. Sub-Fig 51a shows how
reducing the number of infectious �ea reduce the number of secondary infections. This is also
true when the parameters that are affected by seasonal weather variation are evaluated using the
temperature data in Tanga (Sub-Fig 51c) and using the time averaged seasonal parameters (Sub-
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Fig 51b). This result is in light of the fact that, the reduction of �ea population will reduce the
number of individual with bubonic and septicemic and as a result reduce number of pneumonic
plague infectives that result from the progression of individual with bubonic and septicemic
plague.

(a) (b)

(c)

Figure 51: Effect of increased number of �ea’s death rate on the periodic reproduction number.

The reduction of �ea population will not only reduce the infection from �ea to other individual
but also the rate at which �ea gets the disease from other individuals (Human beings and Ro-
dents). When the �ea population is reduced it will as a result reduce the interaction between
susceptible �ea and other infectious individual and vice-versa. The number of �eas getting the
disease increases with the increase with the rate at which �ea acquire infection from infectious
human beings with bubonic plague (see Sub-Fig 52a) and those with septicemic plague (see
Sub-Fig 53a). We further observe that the increase of infectious �ea may be contributed by the
infectious rodents with bubonic plague (see Sub-Fig 54a) and those with septicemic plague (see
Sub-Fig 55a). We can also observe the similar results when the parameters are are evaluated
basing on the temperature data in Tanga region and when the parameters are timely averaged
as in Sub-Fig 52c and Sub-Fig 52b and Sub-Fig 54c and Sub-Fig 54b for human beings and
rodents respectively. Therefore, using these results, we settle to the point that increasing trans-
mission rate in �ea population from Human beings and Rodents with bubonic and septicemic
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plague raises the average number of secondary plague disease infections.

(a) (b)

(c)

Figure 52: The effect of increased infection rate to Fleas from the infectious Human beings (IHB) on

the Periodic Reproduction Number

(a) (b)
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(c)

Figure 53: The effect of increased infection rate to Fleas from the infectious Human beings (IHS) on

the Periodic Reproduction Number

(a) (b)

(c)

Figure 54: The effect of increased infection rate to Fleas from the infectious rodents (IRB) on the

Periodic Reproduction Number
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(a) (b)

(c)

Figure 55: The effect of increased infection rate to Fleas from the infectious rodents (IRS) on the

Periodic Reproduction Number

Physical contact that include sexual contact between two infectious individual (Human beings
and Rodents) may lead to septicemic plague. The increase in the number of individual with
septicemic plague affects the general dynamics of plague disease particularity the average num-
ber of secondary infections. It is illustrated that increasing infection rate from a Human beings
with septicemic plague to the other susceptible Human (see Sub-Fig 56a) and from Rodent with
septicemic plague to the susceptible Rodents (see Sub-Fig 57a) increases the average number
of secondary infections. The result again shows a clear correlation when parameters are eval-
uated based on the Temperature data from Tanga region (see Sub-Fig 56c and Sub-Fig 57c )
and when are averaged (see Sub-Fig 56b and Sub-Fig 57b) for human beings and rodents re-
spectively. This shows the necessity to educate human beings practice safe sex using protective
gears and taking necessary precaution when handling people or animals with septicemic plague.
It also tells us that, there is a necessity to quarantine people and animals that immigrate from
areas that are infected by septicemic plague so that they do not affect other Human beings or
animals and thus increases the endemicity of the disease.
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(a) (b)

(c)

Figure 56: Effect of infection rate (�hsh) on the Periodic reproduction number.

(a) (b)

(c)

Figure 57: Effect of infection rate (�rsr) on the Periodic reproduction number.
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The distribution of the basic reproduction number is based on the seasonal weather condition of
a particular area at a particular time. This is what causes the unpredictability of the number of
secondary cases of plague disease infection (Bubonic, septicemic and pneumonic plague) as it
will change whenever the weather conditions changes. We evaluate the distribution of the basic
reproduction number based on the data we obtained on daily temperature (0C) and humidity(%)
from �ve regions in Tanzania from January to December, 2013. Figure 58, Fig. 59, Fig. 60, Fig.
61 and Fig. 62 shows the seasonal distribution of basic reproduction number when evaluated
based on the Temperature and Humidity data from Kigoma, Mbeya, Mtwara, Singida and Tanga
regions respectively.

(a) (b)

Figure 58: Distribution of R0 based on �uctuation of Temperature (Sub-Fig 58a) and Relative

Humidity (Sub-Fig 58b) data in Kigoma

(a) (b)

Figure 59: Distribution of R0 based on �uctuation of Temperature (Sub-Fig 59a) and Relative

Humidity (Sub-Fig 59b) data in Mbeya
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(a) (b)

Figure 60: Distribution of R0 based on �uctuation of Temperature (Sub-Fig 60a) and Relative

Humidity (Sub-Fig 60b) data in Mtwara

(a) (b)

Figure 61: Distribution of R0 based on �uctuation of Temperature (Sub-Fig 61a) and Relative

Humidity (Sub-Fig 61b) data in Singida

(a) (b)

Figure 62: Distribution of R0 based on �uctuation of Temperature (Sub-Fig 62a) and Relative

Humidity (Sub-Fig 62b) data in Tanga

The features displayed in these results clearly show how seasonal weather �uctuation can be
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of signi�cant effects on the number of secondary cases of plague disease. It can be noted
that there is a seasonal pattern in new plague disease infection cases. We therefore vindicate
that the number plague disease infectives peaks whenever the weather condition is favorable
for plague disease transmission and it drops when the weather condition do not favor plague
disease transmission.

6.7 Conclusion

The transmission of plague disease occurs in several pathways which makes the modeling of the
disease challenging and very complex. Moreover all ways that lead to plague disease transmis-
sion are directly or indirectly affected by seasonal weather variation which cause seasonality in
plague disease epidemic. The effect of seasonal weather variation has been a glowing concern
in different epidemiological studies. This in-turn dictate that in order to study the dynamics and
propose the effective control strategies of the plague disease we must incorporate the effect of
seasonal weather variation. In this study we have analysed the plague disease model incorpo-
rated with the factors that are affected by the seasonal weather variation in order to study its
effects on the dynamics of the plagues disease. We have computed basic reproduction number
and depict how it can be affected by seasonal weather variation through numerical simulation.
We were able to deduce that, progression rates from one primary form to secondary form of
plague infection, �ea’s infection rate and the vector �ea abundance pose the signi�cant effect
on the increase of the average number of secondary cases of plague infection. Therefore the
effective control strategies must take into account these factors as they have shown to have a
signi�cant contribution on the increase of the average number of secondary cases of plague
infection.
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CHAPTER SEVEN

Plague Disease Model with Weather Seasonality 6

Abstract: The plague disease model that include the effect of seasonal weather variation in its
transmission is investigated in this paper. The disease is caused by an extremely virulent bac-
teria Yersinia pestis named after a French bacteriologist Alexandre Yersin. The analysis shows
that, when the periodic reproduction number (RT ) is greater than one there exist a globally
asymptotically stable disease free equilibrium solution (DFS). Using fundamental existence-
uniqueness theorem we were able to prove the existence of positive periodic solutions. The
analysis further shows that when RT > 1 then there is at least one positive periodic solution.
We additionally establish the conditions for global stability of periodic solutions of the model
and �nally using numerical simulation we depict the behavioral dynamics of plague disease and
justify the theoretical solutions.

Key words: Periodic solutions; disease free equilibrium; local stability; global stability; Lya-
punov function;

7.1 Introduction

Plague disease is a severe, frequently lethal and potentially epidemic re-imaging disease caused
by infection with the gram negative bacterium called Yersinia pestis (Wagner et al., 2014). It is
greatly affected by seasonal weather variation as it in�uences all components involved in plague
disease system (Ari et al., 2011). In most cases, seasonal �uctuation of weather condition is
regarded as the primary factors that cause the recurrent of plague disease circle and is probably
the factor that enlighten the reasons for variability of plague disease from small to large scales
(Patz et al., 2000, 2003). Weather variation dictates the infection rate of the plague disease, as
it affect natural demographic behaviour of the populations involved in its dynamics (Stenseth
et al., 2006; Gage et al., 2008).

The environmental condition varies due to seasonal �uctuation of weather parameters which
naturally are subjected to �uctuation in time. Recently the issue of effect of seasonal weather
variation in the dynamics of infectious disease has become the key point to many epidemiolog-
ical researchers due to the fact that many infectious disease are affected by different element of

6This chapter is based on a research paper: Ngeleja, R. C., Luboobi, L. S., & Nkansah-Gyekye, Y. (2018).
Plague Disease Model with Weather Seasonality. Mathematical biosciences.
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weather conditions in the environment (Altizer et al., 2006). The variation in disease dynam-
ics caused by season weather variation may be due to its ability to alter infection rate of the
disease, birth and death rates and immigration rates (Ma and Ma, 2006; Lou and Zhao, 2010).
Now if the desired disease dynamics is affected by these �uctuations it changes from being an
autonomous disease model system to non-autonomous which is a bit tough in analyzing (Bai
and Zhou, 2011).

To better understand the dynamics of infectious diseases we use mathematical models, which
are the powerful tools for studying the wide range of phenomena in real world (Hannon and
Ruth, 2014). In most cases mathematical epidemiology results re�ect the reality and may be
useful in predicting the dynamics of the disease in the particular range of time (Keeling and
Rohani, 2008). However in most epidemic models, the model parameters such as transmission
rates, migration rates and birth and death rates are mostly considered to be constants regardless
of the seasonal behavior of most of the infectious diseases due to weather conditions �uctua-
tions (Altizer et al., 2006). Therefore for more realistic disease dynamics and result, we must
take into account the seasonal variation of the epidemic due to weather �uctuation. In this pa-
per we study the dynamics of non-autonomous model system of plague disease with periodic
transmission rate. We therefore assume the seasonal transmission to be sinusoidal, in a form as
given in (1).

�(t) = �0(1 + �cos(2�t)) (1)

where � is the amplitude of seasonal variation in transmission also known as strength of sea-
sonal forcing and �0 is the average transmission rate.

We discuss the plague disease system dynamics in terms of global stability of the disease-free
equilibrium, the existence of positive periodic solutions and the stability of positive periodic
solution. We further use numerical simulations to illustrate the theoretical results.

7.2 Model formulation

The model has four settings: Human population, rodent population, �ea population and
pathogens in the environment (A). The total human population is divided into six compartments:
susceptible human (SH), exposed human (EH), bubonic plague infectives (IHB), septicemic
plague infectives (IHS), pneumonic plague infective (IHP ), Recovered human (RH) and N1 =
SH +EH + IHB + IHS + IHP +RH . Total rodent population is divided into �ve compartments:
susceptible rodent (SR); exposed rodent (ER), bubonic plague infectives (IRB), septicemic
plague infectives (IRS), pneumonic plague infective (IRP ) andN3 = SR+ER+IRB+IRS+IRP .
The total �ea population is divided into two compartment: susceptible �ea (SF ), infectious �ea
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(IF ) and N2 = SF + IF .

Human being gets plague (Bubonic, pneumonic and septicemic) infection after they adequately
interact with various infectious agents as follows: infectious human and rodent with pneumonic
plague through airborne transmission at the periodic rates �hph(t) and �rph(t) respectively;
infectious human and rodent with septicemic plague through direct physical contact including
sexual contact at the periodic rates �hsh(t) and �rsh(t) respectively; infectious �ea at a periodic
rate �fh(t) and pathogens in the environment at the periodic rate !1(t) which makes the force
of infection to human beings as given in (2)

G1(t) =
�hph(t)IHP + �hsh(t)IHS

N1
+ �fh(t)

IF
N2

+
�rph(t)IRP + �rsh(t)IRS

N3
+ !1(t)A (2)

Rodent also gets plague infection when they adequately contact with various infectious agents as
follows: infectious rodent and human with pneumonic plague through airborne transmission at
the periodic rates �rpr(t) and �hpr(t) respectively; infectious rodent and human with septicemic
plague through direct physical contact including sexual contact at the periodic rates �rsr(t) and
�hsr(t) respectively; infectious �ea at aperiodic rate �fr(t) and pathogens in the environment
at the periodic rate !2(t) which makes the force of infection to rodents as given in (3)

G2(t) =
�hpr(t)IHP + �hsr(t)IHS

N1
+ �fr(t)

IF
N2

+
�rpr(t)IRP + �rsr(t)IRS

N3
+ !2(t)A (3)

Susceptible �ea may get infection when they bite human beings or rodents with bubonic or
septicemic plague at the periodic rated rates �hbf (t) or �hsf (t) or �rbf (t) or �rsf (t) respectively
which makes the force of infection in �eas as given in (4). Human being and rodents with
pneumonic plague infest the environment with pathogens causing plague disease at the periodic
rates �1(t) and �2(t) respectively.

G3(t) =
�hbf (t)IHB + �hsf (t)IHS

N1
+

�rbf (t)IRB + �rsf (t)IRS
N3

(4)

7.2.1 Variables and Parameters used in the model

This section presents variables and parameters, their description and their values as used in
the model. We obtain the parameters from the literature that relate to this study, the present
information on plague disease and through estimation using sensitivity analysis and simulations.
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Table 17: Variables and their description for effect of weather on plague.

Variable Description
SH Susceptible Human population
EH Exposed human population
IHB Infectious human population infected with bubonic plague
IHS Infectious human population with septicemic plague
IHP Infectious human population with Pneumonic plague
RH Recovered Human population
SR Susceptible rodents
ER Exposed rodents
IRB Infectious rodents with bubonic plague
IRS Infectious rodents with septicemic plague
IRP Infectious rodents with pneumonic plague
SF Susceptible �eas
IF Infected �eas
A Pathogens in the soil/environment

Table 18: Parameters and their description for effect of weather on plague.

Parameters Description Value Reference/Source
�rbf (t) Adequate contact rate: between IRB and �ea 0.1 Eisen et al. (2007)
�rsf (t) Adequate contact rate: between IRS and �ea 0.1 Eisen et al. (2007)
�fh (t) Adequate contact rate: between IF and human 0.0641 Eisen et al. (2007)
�f r (t) Adequate contact rate: between IF and rodent 0.0641 Eisen et al. (2007)
�hph (t) Adequate contact rate: between IHP and SH 0.39 Estimated
�hsh (t) Adequate contact rate: between IHS and SH 0.12 Estimated
�rbh (t) Adequate contact rate: between IRB and SH

�rph (t) Adequate contact rate:between IRP and SH 0.19 Estimated
�rsh (t) Adequate contact rate: between IRS and SH 0.21 Estimated
�1 Probability of progressing from SH to EH 0.99 Estimated
�2 Progression rate out of EH to infectious state 0.23 Gani and Leach (2004)
�1�3 Progression rate out of IHB to IHP

�2�3 Progression rate out of IHB to RH

�3�3 Progression rate out of IHB to IHS

�1b Disease induced death rate of IHB 0.04 Keeling and Gilligan (2000a)
�4 Progression rate out of IHS to IHP and RH 0.06 Estimated
�1s Disease induced death rate of IHS 0.04 Estimated
�5 Progression rate out of IHP to RH 0.4 Gani and Leach (2004)
�1p Disease induced death rate of IHP 0.63 Kugeler et al. (2015)
1 Probability of progressing from SR to ER 0.92 Estimated
�hbf (t) Adequate contact rate: between IHB and �ea 0.1 Eisen et al. (2007)
�hsf (t) Adequate contact rate: between IHS and �ea 0.1 Eisen et al. (2007)
�rpr (t) Adequate contact rate: between IRP and SR 0.9 Estimated
�rsr (t) Adequate contact rate: between IRS and SR 0.9 Estimated
�hpr (t) Adequate contact rate: between IHP and SR 0.00005 Estimated
�hsr (t) Adequate contact rate: between IHS and SR 0.00008 Estimated
2 The rate at which rodent become infectious 0.98 Estimated
3 Progression rate out of IRB to IRS and IRP 0.194 Tollenaere et al. (2010)
�3b Disease induced death rate of IRB 0.1 Estimated

Continued on next page
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Table 18 � Continued from previous page
Parameters Description Value Reference/Source
4 Progression rate out of IRS to IRP 0.05 Estimated
�3s Disease induced death rate of IRS 73 Tollenaere et al. (2010)
�3p Disease induced death rate of IRP 0.14 Estimated
$ Progression rate of RH to SH 0.33 Kugeler et al. (2015)
�1 Natural death rate for Human being 0.04 Keeling and Gilligan (2000a)
�2 Natural death rate for Flea 0.2 Bacot and Martin (1924)
�3 Natural death rate for rodent 1 Morand and Harvey (2000)
!1(t) Adequate contact rate: A and Human being
!2(t) Adequate contact rate: A and rodent
�1(t) Recruitment rate of A by IHP 0.2 Estimated
�2(t) Recruitment rate of A by IRP 0.4 Estimated
�4 Natural death rate for Pathogens 0.1 Estimated
 1 Recruitment rate of human beings 0.09 Estimated
 2 Recruitment rate of �eas
 3 Recruitment rate of rodents

Figure 63 shows the dynamics of complex interaction between human beings, rodents, �eas
and pathogens in the environment that lead to plague disease transmission from one infectious
individual to the susceptible individual.

Figure 63: Compartment Model for Plague Disease

198



Using the description of infection, variables and parameters stated in Tables 17 and 18 and the
compartmental diagram in Fig. 63 we derive the system of differential equations that describe
plague disease dynamics in human beings, rodents, �eas and pathogens in the environment as
given in (5) - (8).

Human beings

dSH
dt

=  1 +$RH � �1G1(t)SH � �1SH ; (5a)

dEH
dt

= �1G1(t)SH � �2EH � �1EH ; (5b)

dIHB
dt

= �2�2EH � �3IHB � (�1 + �1b)IHB; (5c)

dIHS
dt

= �3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS; (5d)

dIHP
dt

= �2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP ; (5e)

dRH

dt
= �3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH : (5f)

Rodents
dSR
dt

=  3 � 1G2(t)SR � �3SR; (6a)

dER
dt

= 1G2(t)SR � 2ER � �3ER; (6b)

dIRB
dt

= 2�3ER � 3IRB � (�3 + �3b)IRB; (6c)

dIRS
dt

= 2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS; (6d)

dIRP
dt

= 2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ; (6e)

Fleas
dSF
dt

=  2s � �G3(t)SF � �2SF ; (7a)

dIF
dt

= �G3(t)SF � (�2 + �2)IF (7b)

Pathogens
dA
dt

= �4(t) +
�1(t)IHP
N1

+
�3(t)IRP
N3

� �4(t)A: (8)

7.3 Preliminaries

Proposition 3. The solution (SH , EH , IHB, IHS , IHP , RH , SR, ER, IRB, IRS , IRP , SF , IF , A)
of system (5) - (8) with positive initial condition is positive and ultimately uniformly bounded
on [0;1).
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Proof. Assume the solution

(SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A)

with positive initial condition exist and is unique on [0; b) where 0 < b <1. Since

S 0H =  1 +$RH � �G1(t)SH � �1SH � �(�1G1(t)SH + �1SH)

SH � SH(0)exp
�
�
Z t

0
�1G1(x) + �1

�
dx > 0

for all t 2 [0; b), following the same procedure we ca prove that EH > 0, IHB > 0, IHS > 0,
IHP > 0, RH > 0, SR > 0, ER > 0, IRB > 0, IRS > 0, IRP > 0, SF > 0, IF > 0 and A > 0

Furthermore Since the system is modeling Human, Rodent, Vector(�ea) and pathogens pop-
ulations, we assume that all state variables and parameters of the model are non-negative
8t � 0. We then analyze the model in a suitable feasible region. We are able proved that
all forward solutions in R14

+ of the system are feasible if they enter the invariant region � for
� = 
H � 
R � 
F � 
A

where


H = (SH ; EH ; IHB; IHS; IHP ; RH) 2 R6
+ : SH + EH + IHB + IHS + IHP +RH � N1


R = (SR; ER; IRB; IRS; IRP ) 2 R5
+ : SR + ER + IRB + IRS + IRP � N3


F = (SF ; IF ) 2 R2
+ : SF + IF � N2


A = A 2 R1
+

and � is the positive invariant region of the whole system.

7.4 Basic reproduction number

In this section, we drive the expression for the basic reproduction number of the plague disease
system (5) - (8). The system has disease free equilibrium point given as,

E0(S0
H ; E0

H ; I0
HB; I0

HS; I0
HP ; R0

H ; S0
R; E0

R; I0
RB; I0

RS; I0
RP ; S0

F ; I0
F ; A0)

=
�
 1
�1
; 0; 0; 0; 0; 0;  3

�3
; 0; 0; 0; 0;  2s

�2
; 0; 0

�
:

(9)

Now following the method of �nding the basic reproduction number of non-autonomous model
systems by Wang and Zhao (2008), we let CT be the ordered Banach space of all T - periodic
function from R to Rn, which is equipped with the maximum norm k : k1 and the positive cone
C+
T = f� 2 CT�(t) � 0; t 2 Rg. We de�ne a linear operator L : CT �! CT by

(L�)(t) =
Z 1

0
Y (t; t� a)F (t� a)�(t� a)da; 8t 2 R; � 2 CT (10)
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where L is the next infection operator. Then the basic reproduction number is given by

RT = �(L) (11)

where �(L) is the spectral radius of L.

7.5 Global Stability of DFS

By Zhang and Zhao (2007) [Theorem 2.2] if RT > 1, then DFS is unstable and if RT < 1
then DFS is locally asymptotically stable. Therefore we only need to prove that DSF is globally
attractive for RT < 1. Thus we show that independent of the initial population size if the
average number of secondary infections is less than one that is RT < 1, then the disease free
solution is globally asymptotically stable and then the disease dies out.

Since SH(t), EH(t), IHB(t), IHS(t), IHP (t), RH(t), SR(t), ER(t), IRB(t), IRS(t), IRP (t),
SF (t), IF (t) and A(t) is a non-negative solution for system (5)- (8) in �, using Proposition 3
we have:

SH(t) + EH(t) + IHB(t) + IHS(t) + IHP (t) +RH(t) �
 1

�1

SR(t) + ER(t) + IRB(t) + IRS(t) + IRP (t) �
 3

�3

and
SF (t) + IF (t) �

 2s

�2

at disease free we will have,

SH �
 1

�1
; SR �

 3

�3
; SF �

 2s

�2
: (12)

Using (12) we can then modify system (5)- (8) for t � 0. The auxiliary system becomes:

Human beings

dEH
dt
� �1G1(t)

 1

�1
� �2EH � �1EH ; (13a)

dIHB
dt

= �2�2EH � �3IHB � (�1 + �1b)IHB; (13b)

dIHS
dt

= �3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS; (13c)

dIHP
dt

= �2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP ; (13d)
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Rodents
dER
dt
� 1G2(t)

 3

�3
� 2ER � �3ER; (14a)

dIRB
dt

= 2�3ER � 3IRB � (�3 + �3b)IRB; (14b)

dIRS
dt

= 2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS; (14c)

dIRP
dt

= 2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ; (14d)

Fleas
dIF
dt
� �G3(t)

 2s

�2
� (�2 + �2)IF (15a)

Pathogens
dA
dt

= �4(t) +
�1(t)IHP
N1

+
�3(t)IRP
N3

� �4(t)A: (16)

which can be written as:
0

BBBBBBBBB@

EH
IHB
IHS
IHP
ER
IRB
IRS
IRP
IF
A

1

CCCCCCCCCA

0

= (F (t)� V (t))

0

BBBBBBBBB@

EH
IHB
IHS
IHP
ER
IRB
IRS
IRP
IF
A

1

CCCCCCCCCA

(17)

Using Zhang and Zhao (2007) [Lemma 2.1] we deduce that there exists a positive T - periodic
function %(t) such that e�t%(t) is a solution of (17), where � = 1

T ln(�(�(F (t)�V (t))(T ))).

We chose t1 � 0 and a real number " > 0 such that
0

BBBBBBBBBB@

EH(t1)
IHB(t1)
IHS(t1)
IHP (t1)
ER(t1)
IRB(t1)
IRS(t1)
IRP (t1)
IF (t1)
A(t1)

1

CCCCCCCCCCA

� "%(0) (18)

Using comparison principal, we get
0

BBBBBBBBBB@

EH(t)
IHB(t)
IHS(t)
IHP (t)
ER(t)
IRB(t)
IRS(t)
IRP (t)
IF (t)
A(t)

1

CCCCCCCCCCA

� "%(t� t1)e�(t�t1); 8t � t1 (19)
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Using Zhang and Zhao (2007) [Theorem 2.2] it is easy to deduce that RT < 1 if and only
if �(�(F (t)�V (t))(T )) < 1, and thus � = 1

T ln(�(�(F (t)�V (t))(T ))) < 0. Therefore the disease
free equilibrium solution is globally and asymptotically stable if RT < 1. It then leads to the
following theorem.

Theorem 7.16
The Disease Free solution E0 of plague disease is globally asymptotically stable if RT < 1and
unstable if RT > 1.

7.6 Existence of Positive Periodic Solutions

De�ne X0 = (SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A) 2 X : EH > 0,
IHB > 0; IHS > 0; IHP > 0; ER > 0; IRB > 0; IRS > 0; IRP > 0; IF > 0; A > 0 and
@X0 = XnX0, denote u(t; x0) as the unique solution of the system (5)- (8) with the initial value
x0 = (S0

H ; E0
H ; I0

HB; I0
HS; I0

HP ; R0
H ; S0

R; E0
R; I0

RB; I0
RS; I0

RP ; S0
F ; I0

F ; A0). Let P : X �! X be
the Poincar·e map associated with system (5)- (8), that is

P (x0) = u(T; x0); 8x0 2 X;

where T is the period . We then apply the fundamental existence-uniqueness theorem, u(t; x0)
is the unique solution of the system (5)- (8) with u(0; x0) = x0. This proves that P is uniformly
persistent with respect to (X0; @X0)

We have proven that X and X0 is positively invariant and P is point dissipative and uniformly
persistence with respect to (X0; @X0) from Theorem 4.1. For system (5)- (8), by continuity
theorem we have the Proposition 4

Proposition 4. When RT > 1 there exist a ‘ > 0 such that when k (�0) � P0 k� ‘ for any
(�0) 2 X0 we have limm�1supd[Pm(�0); P0] � ‘.
where �0 = (S0

H ; E0
H ; I0

HB; I0
HS; I0

HP ; R0
H ; S0

R; E0
R; I0

RB; I0
RS; I0

RP ; S0
F ; I0

F ; A0)

Proof. By Zhang and Zhao (2007) we know that RT > 0 if and only if �(�F (t)�V (t)(T ) > 1
by continuity of the spectrum for matrices (Kato, 2013) we can choose } > 0 which is small
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enough such that �F (t)�V (t)�M}(T ) > 1 where

M} =

0

BBBBBBBBBB@

0 0 } } 0 0 } } } }
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 } } 0 0 } } } }
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 } } 0 0 } } 0 0 0
0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCA

(20)

We then prove by contradiction that

lim sup
m�!1

d(Pm(�0); P0) � }; 8� 2 X0 (21)

If not then
lim sup
m�!1

d(Pm(�0); P0) < } (22)

for some �0 2 X0. Without loss of generality we assume that

d(Pm(�0); P0) < }; 8m � 0 (23)

By the continuity of the solutions with respect to initial values we obtain

k u(t; Pm(�0))� u(t; P0) k� } 8m � 0;8t 2 [0; T ] (24)

Now for any t � 0 let t = mT + t1, where t1 2 [0; T ] and m =
� t
T

�
is the greatest integer less

than or equal to t
T . We then have

k u(t; Pm(�0))� u(t; P0) k=k u(t1; Pm(�0))� u(t1; P0) k � }8t � 0 (25)

It then implies that ŜH �} � SH(t) � ŜH +}, ŜR�} � SR(t) � ŜR +}, ŜF �} � SF (t) �
ŜF + }, t � 0. Now for k (�0)� P0 k� } we then have

dEH
dt
� �1G1(t)(ŜH � })� �2EH � �1EH ; (26a)

dIHB
dt

= �2�2EH � �3IHB � (�1 + �1b)IHB; (26b)

dIHS
dt

= �3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS; (26c)

dIHP
dt

= �2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP ; (26d)

dRH

dt
= �3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH : (26e)
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dER
dt
� 1G2(t)(ŜR � })� 2ER � �3ER; (27a)

dIRB
dt

= 2�3ER � 3IRB � (�3 + �3b)IRB; (27b)

dIRS
dt

= 2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS; (27c)

dIRP
dt

= 2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ; (27d)

dIF
dt
� �G3(t)(ŜF � })� (�2 + �2)IF (28a)

dA
dt

= �4(t) +
�1(t)IHP
N1

+
�3(t)IRP
N3

� �4(t)A: (29)

Next we consider the linear system

dEH
dt

= �1G1(t)(ŜH � })� �2EH � �1EH ; (30a)

dIHB
dt

= �2�2EH � �3IHB � (�1 + �1b)IHB; (30b)

dIHS
dt

= �3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS; (30c)

dIHP
dt

= �2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP ; (30d)

dRH

dt
= �3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH : (30e)

dER
dt

= 1G2(t)(ŜR � })� 2ER � �3ER; (31a)

dIRB
dt

= 2�3ER � 3IRB � (�3 + �3b)IRB; (31b)

dIRS
dt

= 2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS; (31c)

dIRP
dt

= 2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ; (31d)

dIF
dt

= �G3(t)(ŜF � })� (�2 + �2)IF (32a)

dA
dt

= �4(t) +
�1(t)IHP
N1

+
�3(t)IRP
N3

� �4(t)A: (33)

Using Lemma 2:1 in Zhang and Zhao (2007) it follows that there exists a positive T - periodic
function ^f(t) such that f(t) = e�t ^f(t) is the solution of the linear system (30) - (33) where

� =
1
T
ln(�(�(F (t)�V (t)�M})(T )))
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Now since �(�(F (t)�V (t)�M})(T )) > 1 when g(0) > 0, g(t) �!1 as t �!1 when we apply
the comparison principal as stated by Smith and Waltman (1995)we have

EH(0) � 0, IHB(0) � 0, IHS(0) � 0, IHP (0) � 0, ER(0) � 0, IRB(0) � 0, IRS(0) � 0,
IRP (0) � 0, IF (0) � 0, A(0) � 0, EH �! 1, IHB �! 1, IHS �! 1, IHP �! 1,
ER �! 1, IRB �! 1, IRS �! 1, IRP �! 1, IF �! 1 and A �! 1 as t �! 1. This
lead to a contradiction.

Now let M@ = f(�0) 2 @X0 : Pm(�0) 2 @X0;8m � 0g

We claim that

M@ = f(SH ; 0; 0; 0; 0; SR; 0; 0; 0; 0; SF ; 0; 0) : (SH ; SR; SF ) � 0g (34)

Obviously f(SH ; 0; 0; 0; 0; 0; SR; 0; 0; 0; 0; SF ; 0; 0) 2 X : (SH ; SR; SF ) � 0g �M@

We therefore need to prove that

M@ � f(SH ; 0; 0; 0; 0; 0; SR; 0; 0; 0; 0; SF ; 0; 0) 2 X : (SH ; SR; SF ) � 0g �M@

That is for any (�0) 2 @X0 we have
EH(mT ) = IHB(mT ) = IHS(mT ) = IHP (mT ) =RH(mT ) = ER(mT ) = IRB(mT ) =
IRS(mT )= IRP (mT ) = IF (mT ) = A(mT ) 8m � 0

If there exists an m1 � 0 such that:
(EH(m1T ); IHB(m1T ); IHS(m1T ); IHP (m1T ); RH(m1T ), ER(m1T ), IRB(m1T ), IRS(m1T ),
IRP (m1T ), IF (m1T ), A(m1T ))T > 0;

We replace the initial time 0 with m1T following the same process as in Dumont et al.
(2008) we can prove that SH > 0; SR > 0; SF > 0. Analogously we also have
(EH(mT ), IHB(mT ), IHS(mT ), IHP (mT ), RH(mT ), ER(mT ), IRB(mT ), IRS(mT ),
IRP (mT ), IF (mT ), A(mT ))T > 0, 8t > m1T . Thus we have

(�(t)) 2 X08t > m1T

where �(t) = (SH(t); EH(t); IHB(t); IHS(t); IHP (t); RH(t); SR(t); ER(t); IRB(t); IRS(t); IRP (t),
SF (t); IF (t); A(t)) which contradicts that (�0) 2 @X0 that requires Pm(�0) 2 @X0; 8m � 0.
So the equality (34) holds, which implies that E0 is the only �xed point of P and acyclic in
@X0.

P0 = (SH ; 0; 0; 0; 0; 0; SR; 0; 0; 0; 0; SF ; 0; 0) is an isolated invariant set in X and W S(P0) \
X0 = �. By the acyclicity theorem on uniform persistence for map (see Zhao (2013)) it follows
that P is uniformly persistent with respect to (X0; @X0).
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Using the study by Zhao (2013) (Theorem 1.3.6) implies the P has a �xed point (S�H(0); E�H(0),
I�HB(0); I�HS(0); I�HP (0); R�H(0); S�R(0); E�R(0); I�RB(0); I�RS(0); I�RP (0); S�F (0); I�F (0); A�(0)) 2
X0.

Now from the �rst equation of the system (5) - (8) we have

S�H = e�
R t
0 (�1G1(s)+�1)ds[SH0 +

Z t

0
( 1 +$RH)e

R t
0 (�1G1(s)+�1)dsds]

�  1e�
R t
0 (�1G1(s)+�1)ds

Z t

0
e
R t
0 (�1G1(s)+�1)dsds > 0 8t 2 [0; T ]

The seasonality of S�H implies that S�H(t) > 0 for all t > 0. Following the same process as in
Lemma 5.1, we get E�H(t) > 0, I�HB(t) > 0, I�HS(t) > 0, I�HP (t) > 0, R�H(t) > 0, S�R(t) > 0,
E�R(t) > 0, I�RB(t) > 0,I�RS(t) > 0, I�RP (t) > 0 S�F (t) > 0, I�F (t) > 0 and A�(t) > 0 8t � 0.
Therefore ,

(S�H(t), E�H(t), I�HB(t), I�HS(t), I�HP (t), R�H(t), S�R(t), E�R(t), I�RB(t),I�RS(t), I�RP (t) S�F (t),
I�F (t) A�(t)) is a positive T -periodic solution of system (5)- (8). Thus lead to Theorem 7.17
below

Theorem 7.17
System (5)- (8) has at least one positive periodic solution.

7.6.1 Global stability of the positive periodic solution

Here we establish the suf�cient condition for the global stability of positive periodic solution.
A system (5)- (8) is said to be globally attractive if there exist a positive periodic solution

soln1(t) =(SH1(t), EH1(t), IHB1(t), IHS1(t), IHP1(t), RH1(t), SR1(t), ER1(t),
IRB1(t),IRS1(t), IRP1(t) SF1(t), IF1(t) A1(t)) for a system (5)- (8) and any other solution

soln2(t) =(SH2(t), EH2(t), IHB2(t), IHS2(t), IHP2(t), RH2(t), SR2(t), ER2(t),
IRB2(t),IRS2(t), IRP2(t) SF2(t), IF2(t) A2(t)) with positive initial values such that

lim
t�!1

j soln1i(t)� soln2i(t) j = 0

where soln1i and soln2i are the two solutions of the system (5)- (8).

We prove the global stability of the positive periodic solution using Korobeinikov approach.
We �rst formulate a suitable Lyapunov function for plague disease model (Korobeinikov, 2004,
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2007)
The Lyapunov function is as given in the form below;

V =
X

ai(yi � y�i ln yi)

where ai is de�ned as a properly selected positive constant, yi de�nes the population of the ith

compartment at time t, and y�i is the periodic solution for model system (5)- (8) at time t.
Now the Lyapunov function is,

V = W1(SH � S�H lnSH) +W2(EH � E�H lnEH) +W3(IHB � I�HB ln IHB)
+W4(IHS � I�HS ln IHS) +W5(IHP � I�HP ln IHP ) +W6(RH �R�H lnRH)
+W7(SR � S�R lnSR) +W8(ER � E�R lnER) +W9(IRB � I�RB ln IRB)
+W10(IRS � I�RS ln IRS) +W11(IRP � I�RP ln IRP ) +W12(SF � S�F lnSF )
+W13(IF � I�F ln IF ) +W14(A� A� lnA)

The constants Wi are non negative in � for i = 1; 2; 3:::12 , V is Lyapunov function. The
function V together with its constants W1;W2:::W14 are chosen such that V is continuous and
differentiable in a space

We compute the time derivative of V this yields;

dV
dt

= W1(1� S�H
SH

)dSHdt +W2(1� E�H
EH

)dEHdt +W3(1� I�HB
IHB

)dIHBdt +W4(1� I�HS
IHS

)dIHSdt

+W5(1� I�HP
IHP

)dIHPdt +W6(1� R�H
RH

)dRHdt +W7(1� S�R
SR

)dSRdt +W8(1� E�R
ER

)dERdt
+W9(1�

I�RB
IRB

)
dIRB
dt

+W10(1�
I�RS
IRS

)
dIRS
dt

+W11(1�
I�RP
IRP

)
dIRP
dt

+W12(1�
S�F
SF

)
dSF
dt

+W13(1�
I�F
IF

)
dIF
dt

+W14(1�
A�

A
)
dA
dt

Using system (5)- (8) we will have

dV
dt

= W1(1� S�H
SH

)[ 1 +$RH � �1G1(t)SH � �1SH ; ]

+W2(1� E�H
EH

)[�1G1(t)SH � �2EH � �1EH ; ]

+W3(1�
I�HB
IHB

)[�2�2EH � �3IHB � (�1 + �1b)IHB; ]

+W4(1� I�HS
IHS

)[�3�3IHB + �2�3EH � �4IHS � (�1 + �1s)IHS; ]
+W5(1� I�HP

IHP
)[�2�1EH + �3�1IHB + �4�IHS � �5IHP � (�1 + �1p)IHP ; ]

+W6(1� R�H
RH

)[�3�2IHB + �4(1� �)IHS + �5IHP �$RH � �1RH ; ]
+W7(1� S�R

SR
)[ 3 � 1G2(t)SR � �3SR; ]

+W8(1� E�R
ER

)[1G2(t)SR � 2ER � �3ER; ]
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+W9(1� I�RB
IRB

)[2�3ER � 3IRB � (�3 + �3b)IRB; ]
+W10(1� I�RS

IRS
)[2�2ER + 3(1� �)IRB � 4IRS � (�3 + �3s)IRS; ]

+W11(1� I�RP
IRP

)[2�1ER + 3�IRB + 4IRS � (�3 + �3p)IRP ; ]
+W12(1� S�F

SF
)[ 2s � �G3(t)SF � �2SF ; ]

+W13(1� I�F
IF

)[�G3(t)SF � (�2 + �2)IF ]
+W14(1� A�

A )[�4 + �1(t)IHP
N1

+ �2(t)IRP
N3

� �4A:]

Using system (5) - (8) at endemic equilibrium we can after simpli�cation we get the following;

dV
dt

=�W1(1�
S�H
SH

)2 �W2(1�
E�H
EH

)2 �W3(1�
I�HB
IHB

)2 �W4(1�
I�HS
IHS

)2

�W5(1�
I�HP
IHP

)2 �W6(1�
R�H
RH

)2 �W7(1�
S�R
SR

)2 �W8(1�
E�R
ER

)2

�W9(1�
I�RB
IRB

)2 �W10(1�
I�RS
IRS

)2 �W11(1�
I�RP
IRP

)2 �W12(1�
S�F
SF

)2

�W13(1�
I�F
IF

)2 �W14(1�
A�

A
)2

+ F (SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A)

(35)

where the function F (SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A) is non
positive. We follow the procedures by McCluskey (2006); Korobeinikov and Wake (2002).
We take:

F (SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A) � 0

for all
SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A

. Then dV
dt � 0 for all SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A and it is

zero when SH = S�H ; EH = E�H ; IHB = I�HB; IHS = I�HS; IHP = I�HP ; RH = R�H ; SR =
S�R; ER = E�R; IRB = I�RB; IRS = I�RS; IRP = I�RP ; SF = S�F ; IF = I�F ; A = A�. Hence the
largest compact invariant set in SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A
such that dVdt = 0 is the singletonE� which is periodic solution of the plague disease system (5)-
(8). Using LaSalles’s invariant principle by La Salle (1976), it entails that the periodic solution
of plague disease system (E�) is globally asymptotically stable in the interior of the region of
SH ; EH ; IHB; IHS; IHP ; RH ; SR; ER; IRB; IRS; IRP ; SF ; IF ; A and thus leads to Theorem 7.18.

Theorem 7.18
If RT > 1 then the model system (5) and (8) of plague disease has a unique periodic solution
E� which is globally asymptotically stable in SH , EH , IHB, IHS , IHP , RH , SR, ER, IRB, IRS ,
IRP , SF , IF , A .
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7.7 Numerical Results and Discussion

We use the parameter values given in Table 18 to study the behavior of the model system (5) -
(8) through numerical simulation. Sub-Fig. 4b shows the dynamics in human population and
the solution trajectory in (SH , EH , IHB, IHS , IHP )-Space. We can see that, there is a periodic
decrease of the susceptible and exposed populations to its periodic solution. This behavior is
caused by the presence of all three main forms of plague disease, which consequently lead
to mammoth increase of the force of infection. Number of human beings who recover from
the disease somewhat periodically increase and then drops off to its periodic solution. Human
population experiences a very little recovery rate due to the assumption that there is no effort
invested in treating the infected individuals, which is also justi�ed by Gani and Leach (2004).
As the disease become endemic the number of susceptible individuals will decrease and become
exposed to the disease and then infected in any of the three forms of plague depending on the
kind of transmission and individual got into.

Figure 65a shows the dynamics of rodent population, We can see that the infected rodent pop-
ulation ( IRB, IRB and IRB) experience the periodic increase before it lingers to its periodic
solution. The number of susceptible and exposed rodent periodically decreases due to endemic-
ity of the disease to their periodic solutions.

When there is an increase in human beings and rodents infected with plague disease, the rate
of transmission of the disease from Human being and rodents to �ea also increases. Figure 66a
shows the dynamics in �ea population, it shows a signi�cant increase of IF which is mostly
contributed by the increase in number of IHB, IHS , IRB and IRS . The pathogens in the en-
vironment also shows a periodic increase to its periodic solution as in Fig. 67. The behavior
shown by the pathogens in the environment is mostly contributed by the increase in number of
individuals (Human beings and Rodents) with pneumonic plague.

Figures 5, 65b and 66b shows the orbits in (SH , EH , I = IHB + IHS + IHP ) phase-space,
(SR, ER, I = IRB + IRS + IRP ) phase-space and (SH , IF ) phase-space for Human beings,
rodents and �ea populations. These orbits shows the magnitude of periodic solutions which
is determined by the strength of seasonal forcing (�). The repeated oval shapes illustrated by
these Figures also represent the existence and global stability of the periodic solution in these
populations.
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(a) (b)

Figure 64: Figure 64a gives the dynamics of Human with baseline parameter values given in Table 18.

Figure 64b gives the (SH , EH , I = IHB + IHS + IHP ) phase-space plot of system 5

(a) (b)

Figure 65: Figure 65a gives the dynamics of Rodent with baseline parameter values given in Table 18.

Figure 65b gives the (SR, ER, I = IRB + IRS + IRP ) phase-space plot of system 6

(a) (b)

Figure 66: Figure 66a gives the dynamics of Flea with baseline parameter values given in Table 18.

Figure 66b gives the (SH , IF ) phase-space plot of system 7
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Figure 67: The dynamics of Pathogens in the environment with baseline parameter values given in

Table 18

Weather variation affects the dynamics of plague disease in deferent magnitudes depending on
the intensity and the duration it stays supportive or not supportive to the transmission of plague
disease (Chiyaka et al., 2010). Figure 68, Fig. 69 and Fig. 70, Fig. 71, Fig. 72 and Fig. 73, Fig.
74 and Fig. 75 shows that the increase of the amplitude of seasonality periodically increases
the number of infectives in Human beings, Rodents, Fleas and Pathogens in the environment
respectively.

Figure 68: The Effect of the Amplitude of Seasonality in the dynamics of IHB .
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Figure 69: The Effect of the Amplitude of Seasonality in the dynamics of IHS .

Figure 70: The Effect of the Amplitude of Seasonality in the dynamics of IHP .

Figure 71: The Effect of the Amplitude of Seasonality in the dynamics of IRB .

Figure 72: The Effect of the Amplitude of Seasonality in the dynamics of IRS .
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Figure 73: The Effect of the Amplitude of Seasonality in the dynamics of IRP .

Figure 74: The Effect of the Amplitude of Seasonality in the dynamics of IF .

Figure 75: The Effect of the Amplitude of Seasonality in the dynamics of Pathogens in the

Environment.

These results suggest that, when the weather condition fevers the increase of transmission rates
of plague disease in Human beings, Rodents, Fleas and Pathogens in the environment the preva-
lence of the disease increases signi�cantly. The effect posed by weather variation on the rate
of transmission of plague disease, is mainly based on how long and to what extent the weather
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condition favors or hinders the plague disease transmission. This implies that for effective con-
trol results the control measures should be put in place to reduce infection in accordance of the
�uctuation of the plague disease transmission due to seasonality.

The initial conditions used in this model are partly from related literature and others are esti-
mated. In most cases initial values are observed to have stronger in�uence on the infectious
classes. However in other cases the in�uence may be little or almost of no effect on the in-
fectious classes (Zhang et al., 2012). It is then important to study the effects that the initial
condition within the particular population has on the dynamics of the plague disease infection
in human beings, rodents, �eas and pathogens in the environment. From Fig. 76 and Fig. 77
we can see that the changes of initial conditions in susceptible human beings SH(0) shows the
signi�cant effect on the human infectious classes IHB, IHS and IHP . We can also see the same
behavior in infectious rodent and �ea as the initial values for SR(0) and SF (0) changes as in
Fig. 78, 79 and 80 respectively.

(a) (b)

Figure 76: The Effect of initial conditions of SH on the number of IHB and IHS

Figure 77: The Effect of initial conditions of SH on the number of IHP
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(a) (b)

Figure 78: The Effect of initial conditions of SH on the number of IRB and IRS

(a)

Figure 79: The Effect of initial conditions of SH on the number of IRP

(a)

Figure 80: The Effect of initial conditions of SF on the number of IF .

This entails that the increase (decrease) of the initial values will result to the increase (decrease)
of the adequate interaction which lead to the disease within the particular population. It thus
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shows that, reducing the interaction between the susceptible individuals and the infectious hin-
ders the spread of the disease from one individual to the other. This then concludes that an
outbreak of the disease that occur in areas with dense population spreads faster compared to the
one in area of low population.

The effect of changes of initial conditions may also be extended between two different popu-
lations in which the change of initial values in one population affects the dynamics in another
population. Figure 81, Fig. 83, Fig. 84, Fig. 82 and Fig. 85 shows that, the changes in the
initial values of SF (0) and SR(0) has the marginal effect to the infectious human beings and
pathogens in the environment respectively.

(a) (b)

Figure 81: The Effect of initial conditions of SF on the number of IHB and IHS

Figure 82: The Effect of initial conditions of SF on the number of IHP
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(a) (b)

Figure 83: The Effect of initial conditions of SR on the number of IHP and IHB

Figure 84: The Effect of initial conditions of SR on the number of IHS

(a)

Figure 85: The Effect of initial conditions of SR on the number of A

Not all changes of initial conditions have signi�cant effects to the dynamics of plague infection
in another population. Some have a minor effect to other population and the reason may be due
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to the nature of interaction of the respective populations. Figure 86 and Fig. 87 shows that the
changes in initial conditions in SH(0) has a negligible effect in the dynamics of the disease in
rodents, �eas and pathogens in the environment. The same result can also be seen in Fig. 88
which shows that the changes in initial conditions of susceptible �ea SF (0) do not affect the
incidences of infection in rodents and the pathogens in the environment. Moreover we can also
see the that the changes of initial conditions in susceptible rodents SR(0) have no effect on the
pervasiveness of infection in �eas and pathogens in the environment as in Fig. 89.

(a) (b)

(c) (d)

Figure 86: The Effect of initial conditions of SH(0) on the number of infectious rodent and �ea.
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(a)

Figure 87: The Effect of initial conditions of SH(0) on the number of pathogens in the environment.

(a) (b)

(c) (d)

Figure 88: The Effect of initial conditions of SF (0) on the number of infectious rodent and pathogens

in the environment.
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(a)

Figure 89: The Effect of initial conditions of SR(0) on the number of infectious �ea.

Infectious �ea plays a vital role in the transmission of the primary forms of plague disease in
Human beings and Rodents. This gives it an ability to change the dynamics of plague disease
by signi�cantly increase the number of infectious individuals with bubonic and/or septicemic
plague. Figure 90 Fig. 91 and Fig. 92 show the effect of infectious �ea in the dynamics of
plague disease in Human beings and Rodents respectively. We can see that in both Human
beings and Rodents, presence of �ea lead to the increase in the number of infectious classes
of all three forms of plague disease. The graphs shows that Human beings and Rodents with
bubonic plague are mostly affected followed by those with septicemic plague and lastly the
pneumonic plague infectives. In both populations, bubonic and septicemic plague infectious
classes are highly affected by �ea in light of the fact that they are directly transmitted through
�ea bite. Thus the increase of infectious �ea proportionally increase the bubonic and septicemic
plague infection rates.

(a) (b)
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(c) (d)

Figure 90: The effect of �ea in the dynamics of plague in Human population.

(a) (b)

Figure 91: The effect of �ea in the dynamics of SR and IRB .

(a) (b)

Figure 92: The effect of �ea in the dynamics of IRS and IRP .

The dynamics and transmission of plague disease in Human population is mainly sustained by
the presence of infectious �eas, rodents and the pathogens in the environment. Each of these
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agents plays different role in the transmission and spread of plague disease. Figure 93 and Fig.
94 shows the contribution of each agent in the dynamics of plague disease in human population.
It shows the dynamics of human population when these plague disease transmission agents in
different levels are assumed not to contribute to the transmission of plague disease. The results
shows that, the absence of �ea alone lead to a very signi�cant decrease of the infectious human
beings compared to the absence of rodent alone. However the decrease of infection appear to
be of much signi�cance when both �ea and rodent are removed from the human dynamics of
plague disease. Moreover, since the pathogens in the environment mostly affect the Human
lungs causing pneumonia, it is the reason why we see that the removal of pathogens in the
environment affect more the human being with pneumonic plague than those with bubonic and
septicemic plague.

(a) (b)

Figure 93: The effect of non-human plague agents in the dynamics of plague in SH and IHB .

(a) (b)

Figure 94: The effect of non-human plague agents in the dynamics of plague in IHS and IHP .

The substantial decrease of infectious classes shown in Fig. 94 justi�es the tangible role played
by �ea, rodents and pathogens in the environment in the transmission and spread of plague
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disease in Human population. This con�rms that controlling �ea’s and rodent population will
reduce the interaction between Human being and non human agents of plague disease and as a
result reduce the transmission and spread of plague disease. It also suggests that maintaining
the good environmental hygiene mostly to the people living in rural areas should be encouraged
in order to reduce multiplication and growth of pathogens in the environment which will in-turn
reduce the probability of being affected by the pathogens in the environment.

These results suggest that, when the weather condition favours the increase of transmission
rates of plague disease in Human beings, Rodents, Fleas and Pathogens in the environment the
prevalence of the disease increases signi�cantly. The effect posed by weather variation on the
rate of transmission of plague disease, is mainly based on how long and to what extent the
weather condition favours or hinders the plague disease transmission. This implies that the
control measures should be put in place to reduce infection in accordance of the �uctuation of
the plague disease transmission due to seasonal weather variation.

7.8 Conclusion

Seasonality continues to be a the great challenge for effective planning and control of infectious
diseases. In most cases, these �uctuations are unpredictable in terms of time they occur and
scope, which extremely harden the proper and effective control plans. In this paper we have
formulated and analyzed the plague disease model with periodic infection rate. We de�ned
the basic reproduction number RT for the proposed model. We have shown that under some
appropriate biological assumption the disease free equilibrium of the plague disease model is
globally asymptotically stable if RT < 1. If RT > 1 then the proposed model has at least one
periodic solution which is globally asymptotically stable. Also using numerical simulation we
have shown the global behavior of the model. From our simulation result we can deduce that
the periodic solution of the plague disease model exists and is globally asymptotically stable.
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CHAPTER EIGHT

General Discussion, Conclusion and Recommendations

8.1 General Discussion

In this study, the mathematical models for the dynamics of plague disease have been devel-
oped and analyzed. The models include four populations which are human, rodent, �ea and
pathogens in the environment. The plague disease model is developed in three stages in which
the �rst stage is the development of bubonic plague model which in our case is considered as the
primary form of plague disease. We then develop the pneumonic plague disease model while
incorporating the features and characteristics that link it with bubonic plague. Third stage is the
development of the combined model of all three forms of plague disease (Bubonic, Pneumonic
and septicemic plague). We �nally modify and analyze the general model by incorporating
variations in the parameters due to seasonal weather variation.

In Chapter Two, we developed a bubonic plague disease model that considered two major modes
of transmission which are through infected �ea bites and the interaction with the infected ma-
terials in the environment. We used the next generation matrix methods to compute the basic
reproduction number R0. We then performed the sensitivity analysis of R0 to determine the
effects of various parameters. We are able to deduce that the number of secondary cases of
individuals with bubonic plague depends on: �ea’s infective period, probability that a rodent
survive the infected class, the adequate contact rate �ea to human, rodent infectious period, the
probability that �ea gets the disease from the rodent or human, human infectious period, prob-
ability that human survive the infected class, the rate at which �eas get infected, the adequate
contact rate between �ea and rodent, and the rate at which human and rodent become exposed
to the disease.

In Chapter Three, we worked on the existence of equilibrium points and established the con-
ditions for their local and global stability. The analysis shows that both endemic equilibrium
and disease free equilibrium points exist. Using the basic reproduction number R0 computed
in Chapter Two we established the condition for persistence and extinction of the disease. We
were able to deduce that the disease free equilibrium point is locally and globally asymptoti-
cally stable when R0 < 1 and unstable when R0 > 1 while the endemic equilibrium point was
found to be locally and globally asymptotically stable when R0 > 1 and unstable when R0 < 1.

In Chapter Four, we developed a pneumonic plague disease model to assess the dynamics of
plague disease when the bacteria are in lungs. In this model we considered the community
with individuals with both bubonic plague and pneumonic plague in light of the fact that after
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three to seven days of bubonic infection, infected individuals with bubonic plague progresses to
become pneumonic plague infectives. We thus have two infective classes, the individuals with
pneumonic plague and the other with bubonic plague. The analytical result in this model shows
that the disease free equilibrium and the endemic equilibrium are locally and globally asymp-
totically stable whenever they exist. We also show that the transmission and spread of pneu-
monic plague depends on the favorable condition of the environment as it is mainly transmitted
through aerosol droplets. The results further postulate that the adequate contact rate between
the infected individual and the susceptible, the incubation period and the infectious period of
an individual are the main factor that drive occurrences and the dynamics of pneumonic plague
epidemic whenever it occurs. These three factors also de�ne the number of secondary cases of
infection any infected individual can produce when introduced in any completely susceptible
population.

In Chapter Five, we formulated the mathematical model that includes the bubonic plague infec-
tives, pneumonic plague infectives and the individuals that are affected by the bacteria causing
plague in their blood system (Septicemic plague infectives). This gave us the combined plague
disease model that has all three forms of plague disease considered in our study. In here we con-
sider three infectious classes which are the individuals with Bubonic plague, Septicemic plague
and Pneumonic plague. In the combined plague disease model we still found that the number
of secondary cases is the function of the adequate contact rate between the infected individual
and the susceptible, the incubation period and the infectious period of the infected individual.
We are able to show that the model is well posed and found the disease free equilibrium point
and the endemic equilibrium point to be locally and globally asymptotically stable whenever
they exist. The result shows the compact relationship between the increase of the number of in-
dividuals with pneumonic plague and the increase of the secondary cases of pneumonic plague
infectives. This proves that even in the absence a vector �ea and the adequate interaction be-
tween individuals from different populations plague can still prevail within human population
and may lead to a signi�cant number of deaths.

We also observed the a signi�cant relationship between the increase of primary forms of plague
disease to the secondary forms. This result is due to the fact that there is high possibility of
individual with a primary form of plague disease to progress and become secondary forms of
plague disease infectives. For example the increase in the number of individuals with bubonic
plague eventually lead to the increase in the number of individuals with pneumonic plague
and septicemic plague. Also the increase of the number of individual with septicemic plague
proportionally increase the number of individual with pneumonic plague. This result calls for
attention to the importance of early treatment to control the spread of plague disease. The result
may be the reason why plague disease still affect mostly african countries as most of her people
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do not have access to drugs for treating or preventing plague disease.

The environment also appear to be the potential agent in the spread and transmission of plague
disease. We noted that, upon favorable condition pathogens survive in the environment and
remain infectious for the long period of time. Then the environment may act as an agent of
transmission and spread of plague disease and the adequate contact with a susceptible indi-
vidual leads to infection. The results show the compact relationship between the increase in
number of individuals with pneumonic plague and the increase in the number of pathogens in
the environment. We are able to show how and to what extent each individual in each possible
disease transmission in a pair of one susceptible and one infected individual (kij) contribute to
the number of secondary cases of plague disease. Due to these results we were able to deduce
that the best, effective and sustainable way to determine the actual number of secondary cases
of plague disease is to �nd out how and to what extent each individual from each population of
each form of plague disease has contributed to the basic reproduction number.

In Chapter Six and Chapter Seven, we modeled the plague disease that incorporate the param-
eters that are affected by seasonal weather variation. The study considers three element of
weather which are Temperature, Humidity and Precipitation. To asses the impact of these ele-
ments of weather we assume all weather affected parameters ultimately affect the transmission
rates of the plague disease. We then modi�ed the transmission rates to be the function of time,
and for mathematical convenience we assume disease transmission rates to be sinusoidal. In
here we are able to show that the positive periodic solution exist and it is locally and globally
asymptotically stable when the average number of secondary infections (RT ) is greater than 1
and unstable when RT < 1. The results show that, the seasonal weather variation dictate the
longevity, lifestyle, death rates, immigration rates, multiplication rates and reproduction rate of
individuals. This in-turn affect the transmission, spread and ultimately the whole dynamic of
the plague disease. It is seen that seasonal weather variation makes the dynamic of the disease
to be suicidal in which the rate of infection increases or decreases when the weather condition
favors or hinder the disease transmission respectively.

We found that the effect posed by the seasonal weather variation to the dynamics of plague dis-
ease depends on two major factors: one is the extent to which the condition favors components
and factors that positively or negatively affect the spread and transmission of plague disease,
two is the duration at which the weather condition remain favorable or unfavorable to the trans-
mission and spread of plague disease. The result shows that the little twist of the amplitude of
seasonality bring about the signi�cant change in the dynamics of plague disease. Awareness of
the capacity to shift the dynamic of plague disease that the change of seasonality amplitude has
is very important as it helps to know when and what control measure should be applied when the
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amplitude is high, moderate or low to effectively control the disease. However we should also
put into consideration the factors that leads to the increase or decrease of the baseline quantity
of the infection rate from one individual to the other for better results.

8.2 Conclusion

Generally we have formulated the mathematical models that show the dynamics of plague dis-
ease covering all possible ways in which plague disease can be transmitted. We have also ex-
plored the effect of seasonal weather variation in the dynamics of plague disease. The models
formulated in this study represent the behavior of Human beings, Rodents(and other domestic
animals), Fleas and pathogens in the environment that give a very complex interaction that may
lead to transmission and spread of Plague disease. All model formulations and analysis are
based on the assumptions and the values of the parameter that are presented in this study. Al-
though this work doest exhaust all forms of plague disease but it is the milestone of the studies
on the dynamics of other forms of plague disease. It also paves a way on the further analysis on
the effects of seasonal weather variation on the dynamics of plague disease.

8.2.1 Signi�cance of the Research

The signi�cances of this study include the following:

(i) The study will improve the current knowledge about the disease especially on the trans-
mission capacity and the dynamics of the disease with accordance to seasonal weather
variation. This will save life of a lot of people especially from rural areas, as they will
take precautions.

(ii) The study will inform policy makers on the threat that may be caused by an outbreak of
plague disease; this will enable them to decide on the best ways of combating the disease
or even preparing the conditions that narrow the possibility of its occurrence.

(iii) Due to the extraordinarily ability of plague disease to cross borders this study will en-
courage and promote international collaborations in health sectors for easy monitoring of
the disease and for security purposes.

(iv) The study will also serve as a milestone to other researchers and pave a way to a even
more exhaustive studies on plague disease.
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(v) The study will in�uence the behavior change in most of the pastoralists societies whose
culture increases the chance of contracting and spreading plague disease.

(vi) The study will serve as an alert to the national security stakeholders and help them to plan
for the effective way to combat the disease when plague bacterium are used as bio-weapon
by terrorists or enemies.

8.3 Recommendations from the study

The ability of Plague disease to reemerge even after years of silence, the complex transmission
network it has, its ability to spread fast to large population and cross borders, its potential for
being used as a biological weapon and the way in which it can easily be affected by seasonal
weather variation makes plague disease a unique challenge that should be given attention by the
health and national security stakeholders for effective planning of control strategies. Now the
results of this study point to the following recommendations:

(i) There should be a serious and effective provision of education to the people especially
those living in rural areas. This may be done through various education campaign that
should reach out large population in order to raise people’s awareness on: The general
understanding of all forms of plague disease and the way they can be transmitted and
spread. The risk of contracting plague disease when human beings live close to domestic
and wild animals. Risk hobbies such as camping and hunting, occupation like veteri-
narians that may lead to plague infection. The precautions that one should take to avoid
getting the disease when there is an outbreak. The complications that may be caused by
plague disease, like the massive number of deaths it has caused, possibility that plague
disease can lead to gangrene which is the death of tissue that is caused by disruption of
the blood �ow due to blood clots in the tiny blood vessels of an individual’s �ngers and
toes and may also result in an in�ammation of the membranes surrounding ones brain and
spinal cord known as meningitis.

(ii) There should be a plan for emergence and effective strategies to combat the disease when
it occur whether naturally or as an outbreak.

(iii) The government should give special attention to high risk areas, especially areas where
plague disease has ever occurred and areas with the weather condition that foster rapid
plague disease occurrence, transmission and spread.

(iv) There should be a continuous monitoring of �ea, rodents and pathogens abundances in
the environment especially those which are close to residential areas.
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(v) Instigate a special plague disease committee in every region that will monitor plague
occurrence in the entire region and help to keep records of plague cases and their conse-
quences in human life. These records are important for further studies on plague disease
and for effective planning of control strategies.

(vi) Ensure the availability of special health practitioners in every hospital, and making sure
that there is an easy access to drugs for treating or preventing plague disease for all. This
will foster early treatment and help to prevent primary forms of plague from progressing
to severe and fatal secondary forms.

(vii) As it is easy for plague disease to cross borders there should be a stable collaboration
between the neighbouring countries in areas like plague disease awareness campaign,
warnings and the strategies to control the disease.

8.4 Future work

This study does not exhaust 100% of a study of plague disease, it may be adjusted in many ways
and analyzed to produce different results to enable the broad understanding of the dynamics of
the plague disease. The study can be extended and adjusted in various ways as given below:

(i) Model optimal control of plague disease under the interventions of vaccination and treat-
ment.

(ii) This study assumes that seasonal weather variation ultimately affect the transmission rate
but one may also analyze the effect of seasonal weather variation by looking at each
individual parameter that is affected by weather variation and include it in the model.

(iii) Include other rare forms of the plague disease like pharyngeal plague and meningeal
plague in the dynamics of plague disease.

(iv) Include the effect of drug resistance in the model.
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APPENDICES

Appendix 1: Matlab Code for Chapters Two and Three

1 function dy = m11(t,y)

2 dy=zeros(size(y))

3 beta = 0.99; mu2 = 0.07; delta2= 0.03; lambda2 = 0.3; lambda1 = 0.1; theta1

= 0.6; theta2 = 0.78;

4 mu3 = 0.2; delta3 = 0.05; alpha2 = 0.04; alpha1 = 0.9; theta4 = 0.5; theta3

= 0.5;

5 mu1 = 0.04; delta1 = 0.04; alpha3 = 0.1; rho = 0.2;pi1=0.5;pi2=0.4;pi3=0.1;

psi1=0.09;varpi=0.1;Gamma1=0.09;omega1=0.001;kappa1=0.5;psi3=300;gamma1

=0.9;Gamma2=4.7;

6 omega2=0.0073;kappa3=0.2;kappa2=0.3;gamma2=0.05;psi22=0.7;Gamma3=0.28;

Gamma4=0.6;psi21=0.99;lambda4=0.89;mu4=0.1;

7 S1=y(1);

8 E1=y(2);

9 I1=y(3);

10 R1=y(4);

11 S3=y(5);

12 E3=y(6);

13 I3=y(7);

14 S2=y(8);

15 I2=y(9);

16 A=y(10);

17 N1=S1+E1+I1+R1;

18 N2=S2+I2;

19 N3=S3+E3+I3;

20 dy(1)=pi1 * psi1+ varpi * R1 - alpha1 * S1* (Gamma1* ((I2)/(N2))+omega1 * A)- mu1 * S1;

21 dy(2)=pi2 * psi1+alpha1 * S1* (Gamma1* (I2/N2)+omega1 * A)-alpha2 * E1-mu1* E1;

22 dy(3)=alpha2 * E1-alpha3 * I1-I1 * (mu1+delta1);

23 dy(4)=pi3 * psi1+alpha3 * I1-varpi * R1-mu1* R1;

24 dy(5)=kappa1 * psi3-gamma1 * S3* (Gamma2* ((I2)/(N2))+omega2 * A)-mu3 * S3;

25 dy(6)=kappa2 * psi3+gamma1 * S3* (Gamma2* ((I2)/(N2))+omega2 * A)-gamma2 * E3-mu3* E3;

26 dy(7)=kappa3 * psi3+gamma2 * E3-I3 * (mu3+delta3);

27 dy(8)=psi22-beta * S2* (rho * Gamma3* ((I1)/(N1))+(1-rho) * Gamma4* ((I3)/(N3)))-mu2

* S2;

28 dy(9)=psi21+beta * S2* (rho * Gamma3* ((I1)/(N1))+(1-rho) * Gamma4* ((I3)/(N3)))- I2

* (mu2+delta2);

29 dy(10)=lambda4-omega1 * A* S1-omega2 * A* S3-mu4* A;

1 clear

2 tspan=[0 50]
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3 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,1), t,y(:,2), t,y(:,3),t,y(:,4))

7 legend(�Susceptible human�,�Exposed human�,�Infected human�,�Recovered

human�)

8 xlabel(�Time[years]�)

9 ylabel(�Human Population�)

1 clear

2 tspan=[0 30]

3 y0=[2000, 1500, 500, 300 ,2500,2000,200,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(2)

6 plot(t,y(:,5), t,y(:,6), t,y(:,7))

7 legend(�Susceptible rodent�,�Exposed rodent�,�Infectious rodent�)

8 xlabel(�Time[years]�)

9 ylabel(�Rodent Population�)

1 clear

2 tspan=[0 100]

3 y0=[2000, 1500, 500, 300 ,2500,2000,200,8000,1000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(3)

6 plot(t,y(:,8),t,y(:,9))

7 legend(�Susceptible flea �,�Infectious flea�)

8 xlabel(�Time[years]�)

9 ylabel(�Flea Population�)

1 clear

2 tspan=[0 100]

3 y0=[2000, 1500, 500, 300 ,5000,3000,2000,8000,5000,5000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(4)

6 plot(t,y(:,10))

7 legend(�Pathogens�)

8 xlabel(�Time[years]�)

9 ylabel(�Pathogens Population�)

1 clear

248



2 tspan=[0 10]

3 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,5]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,10),�b�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Pathogens in the Environment�)

9 hold on

10 tspan=[0 10]

11 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,200]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,10),�r�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Pathogens in the Environment�)

17 hold on

18 clear

19 tspan=[0 10]

20 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,400]

21 [t,y]=ode45(@m11,tspan,y0)

22 figure(1)

23 plot(t,y(:,10),�g�,�linewidth�,2)

24 xlabel(�Time[years]�)

25 ylabel(�Pathogens in the Environment�)

26 hold on

27 clear

28 tspan=[0 10]

29 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,600]

30 [t,y]=ode45(@m11,tspan,y0)

31 figure(1)

32 plot(t,y(:,10),�k�,�linewidth�,2)

33 xlabel(�Time[years]�)

34 ylabel(�Pathogens in the Environment�)

35 hold on

36 clear

37 tspan=[0 10]

38 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,800]

39 [t,y]=ode45(@m11,tspan,y0)

40 figure(1)

41 plot(t,y(:,10),�m�,�linewidth�,2)

42 xlabel(�Time[years]�)

43 ylabel(�Pathogens in the Environment�)

44 hold on

45 clear

46 tspan=[0 10]
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47 y0=[1800, 1500, 100, 300 ,5000,3000,2000,8000,5000,1000]

48 [t,y]=ode45(@m11,tspan,y0)

49 figure(1)

50 plot(t,y(:,10),�y�,�linewidth�,2)

51 xlabel(�Time[years]�)

52 ylabel(�Pathogens in the Environment�)

53 hold off

54 legend(�A(0)= 5�,�A(0)= 200�,�A(0)= 400�, �A(0)= 600�,�A(0)= 800�,�A(0)=

1000�)

1 clear

2 tspan=[0 30]

3 y0=[1800, 1800, 500, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,2),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Exposed human�)

9 hold on

10 tspan=[0 30]

11 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,2),�y�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Exposed human�)

17 hold on

18 tspan=[0 30]

19 y0=[1800, 1000, 500, 300 ,5000,3000,2000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,2),�m�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Exposed human�)

25 hold on

26 tspan=[0 30]

27 y0=[1800, 800, 500, 300 ,5000,3000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,2),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Exposed human�)

33 hold on

34 tspan=[0 30]
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35 y0=[1800, 500, 500, 300 ,5000,3000,2000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,2),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Exposed human�)

41 hold on

42 tspan=[0 30]

43 y0=[1800, 10, 500, 300 ,5000,3000,2000,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,2),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Exposed human�)

49 hold off

50 legend(�E_H(0)= 1800�,�E_H(0)= 1500�,�E_H(0)= 1000�,�E_H(0)= 800�, �E_H(0)=

500�,�E_H(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 300 ,5000,5000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,6),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Exposed rodent�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 500, 300 ,5000,4000,2000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,6),�y�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Exposed rodent�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,6),�m�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Exposed rodent�)

25 hold on

26 tspan=[0 100]
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27 y0=[1800, 1500, 500, 300 ,5000,2000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,6),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Exposed rodent�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,5000,1000,2000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,6),�b�,�linewidth�,2)

39 %legend(�Susceptible human�)

40 xlabel(�Time[years]�)

41 ylabel(�Exposed rodent�)

42 hold on

43 tspan=[0 100]

44 y0=[1800, 1500, 500, 300 ,5000,10,2000,8000,5000,10000]

45 [t,y]=ode45(@m11,tspan,y0)

46 figure(1)

47 plot(t,y(:,6),�k�,�linewidth�,2)

48 %legend(�Susceptible human�)

49 xlabel(�Time[years]�)

50 ylabel(�Exposed rodent�)

51 hold off

52 legend(�E_R(0)= 5000�,�E_R(0)= 4000�,�E_R(0)= 3000�, �E_R(0)= 2000�,�E_R(0)

= 1000�,�E_R(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[2800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,1))

7 xlabel(�Time[years]�)

8 ylabel(�Susceptible human�)

9 hold on

1 clear

2 tspan=[0 100]

3 y0=[100, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)
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6 plot(t,y(:,1))

7 xlabel(�Time[years]�)

8 ylabel(�Susceptible human�)

9 hold on

1 clear

2 tspan=[0 100]

3 y0=[0, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,1))

7 xlabel(�Time[years]�)

8 ylabel(�Susceptible human�)

9 hold on

1 clear

2 tspan=[0 100]

3 y0=[3800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,1))

7 xlabel(�Time[years]�)

8 ylabel(�Susceptible human�)

9 hold off

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,9),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Infected flea�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,4000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,9),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Infected flea�)

17 hold on
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18 tspan=[0 100]

19 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,3000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,9),�y�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Infected flea�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,2000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,9),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Infected flea�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,1000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,9),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Infected flea�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,10,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,9),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Infected flea�)

49 hold off

50 legend(�I_F(0)= 5000�,�I_F(0)= 4000�,�I_F(0)= 3000�, �I_F(0)= 2000�,�I_F(0)

= 1000�,�I_F(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 2800, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,3),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Infected human�)

9 hold on
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10 tspan=[0 100]

11 y0=[1800, 1500, 1800, 300 ,5000,3000,2000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,3),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Infected human�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 1200, 300 ,5000,3000,2000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,3),�r�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Infected human�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 800, 300 ,5000,3000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,3),�b�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Infected human�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 400, 300 ,5000,3000,2000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,3),�y�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Infected human�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 10, 300 ,5000,3000,2000,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,3),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Infected human�)

49 hold off

50 legend(�I_H(0)= 2800�,�I_H(0)= 1800�,�I_H(0)= 1200�, �I_H(0)= 800�,�I_H(0)=

400�,�I_H(0)= 10�)

1 clear
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2 tspan=[0 100]

3 y0=[1800, 1500, 500, 300 ,5000,3000,5000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,7),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Infected rodent�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 500, 300 ,5000,3000,4000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,7),�y�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Infected rodent�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 500, 300 ,5000,3000,3000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,7),�m�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Infected rodent�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,7),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Infected rodent�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,5000,3000,1000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,7),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Infected rodent�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 500, 300 ,5000,3000,10,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,7),�k�,�linewidth�,2)

256



47 xlabel(�Time[years]�)

48 ylabel(�Infected rodent�)

49 hold off

50 legend(�I_R(0)= 5000�,�I_R(0)= 4000�,�I_R(0)= 3000�, �I_R(0)= 2000�,�I_R(0)

= 1000�,�I_R(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 2300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,4),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Recovered human�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 500, 1800 ,5000,3000,2000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,4),�y�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Recovered human�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 500, 1300 ,5000,3000,2000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,4),�m�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Recovered human�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 500, 800 ,5000,3000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,4),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Recovered human�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,4),�b�,�linewidth�,2)
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39 xlabel(�Time[years]�)

40 ylabel(�Recovered human�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 500, 0 ,5000,3000,2000,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,4),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Recovered human�)

49 hold off

50 legend(�R_H(0)= 2300�,�R_H(0)= 1800�,�R_H(0)= 1300�,�R_H(0)= 800�, �R_H(0)=

300�,�R_H(0)= 5�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 300 ,5000,3000,2000,6000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,8),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Susceptible flea�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 500, 300 ,5000,3000,2000,5000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,8),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Susceptible flea�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 500, 300 ,5000,3000,2000,4000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,8),�r�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Susceptible flea�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 500, 300 ,5000,3000,2000,3000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,8),�y�,�linewidth�,2)
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31 xlabel(�Time[years]�)

32 ylabel(�Susceptible flea�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,5000,3000,2000,1500,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,8),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Susceptible flea�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 500, 300 ,5000,3000,2000,10,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,8),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Susceptible flea�)

49 hold off

50 legend(�S_F(0)= 6000�,�S_F(0)= 5000�,�S_F(0)= 4000�, �S_F(0)= 3000�,�S_F(0)

= 1500�,�S_F(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,1),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Susceptible human�)

9 hold on

10 tspan=[0 100]

11 y0=[2800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,1),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Susceptible human�)

17 hold on

18 tspan=[0 100]

19 y0=[500, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,1),�y�,�linewidth�,2)
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23 xlabel(�Time[years]�)

24 ylabel(�Susceptible human�)

25 hold on

26 tspan=[0 100]

27 y0=[100, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,1),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Susceptible human�)

33 hold on

34 tspan=[0 100]

35 y0=[0, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,1),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Susceptible human�)

41 hold on

42 tspan=[0 100]

43 y0=[3800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,1),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Susceptible human�)

49 hold off

50 legend(�S_H(0)= 1800�,�S_H(0)= 2800�,�S_H(0)= 500�,�S_H(0)= 100�, �S_H(0)=

10�,�S_H(0)= 3800�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 300 ,6000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,5),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Susceptible rodent�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,5),�m�,�linewidth�,2)
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15 xlabel(�Time[years]�)

16 ylabel(�Susceptible rodent�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 500, 300 ,4000,3000,2000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,5),�r�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Susceptible rodent�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 500, 300 ,3000,3000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,5),�b�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Susceptible rodent�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,1000,3000,2000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,5),�k�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Susceptible rodent�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 500, 300 ,10,3000,2000,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,5),�y�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Susceptible rodent�)

49 hold off

50 legend(�S_R(0)= 6000�,�S_R(0)= 5000�,�S_R(0)= 4000�, �S_R(0)= 3000�,�S_R(0)

= 1000�,�S_R(0)= 10�)
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Appendix 2: Matlab Code for Chapter Four

1 function dy = m11(t,y)

2 dy=zeros(size(y))

3 beta = 0.99; mu2 = 0.1; delta2= 0.03; lambda2 = 0.3; lambda1 = 0.1; theta1

= 0.6; theta2 = 0.78;

4 mu3 = 0.08; delta3 = 0.05; alpha2 = 0.96; alpha1 = 0.3; theta4 = 0.5;

theta3 = 0.5;

5 mu1 = 0.04; delta1 = 0.09; alpha3 = 0.3; rho = 0.2;pi1=0.5;pi2=0.4;pi3=0.1;

psi1=50;varpi=0.8;Gamma1=0.5;omega1=0.00061;kappa1=0.5;psi3=200;gamma1

=0.1;Gamma2=0.78;

6 omega2=0.0009;kappa3=0.2;kappa2=0.3;gamma2=0.2;psi22=200;Gamma3=0.5;Gamma4

=0.5;psi21=250;lambda4=150;mu4=0.1;

7 S1=y(1);

8 E1=y(2);

9 I1=y(3);

10 I2=y(4);

11 R1=y(5);

12 S2=y(6);

13 I3=y(7);

14 S3=y(8);

15 E3=y(9);

16 I4=y(10);

17 I5=y(11);

18 A=y(12);

19 N1=S1+E1+I1+I2+R1;

20 N2=S2+I3;

21 N3=S3+E3+I4+I5;

22 dy(1)=pi1 * psi1+ varpi * R1 - alpha1 * S1* (Gamma1* ((I2)/(N1))+Gamma2 * ((I3)/(N2))

+Gamma3* ((I5)/(N3))+omega1 * A)- mu1 * S1;

23 dy(2)=pi2 * psi1+alpha1 * S1* (Gamma1* ((I2)/(N1))+Gamma2 * ((I3)/(N2))+Gamma3 * ((I5

)/(N3))+omega1 * A)-alpha2 * E1-mu1* E1;

24 dy(3)=pi3 * psi1+tau1 * alpha2 * E1-alpha3 * I1-I1 * (mu1+kappa1);

25 dy(4)=(1-tau1) * alpha2 * E1+rho * alpha3 * I1-alpha4 * I2-I2 * (mu1+delta1);

26 dy(5)=pi4 * psi1+alpha4 * I2+(1-rho) * alpha3 * I1-varpi * R1-mu1* R1;

27 dy(6)=psi22-beta * S2* (Gamma7* ((rho1 * I1+rho2 * I2)/(N1))+ (Gamma8 * ((rho3 * I4+

rho4 * I5)/(N3))))-mu2 * S2;

28 dy(7)=psi21+beta * S2* (Gamma7* ((rho1 * I1+rho2 * I2)/(N1))+ Gamma8 * ((rho3 * I4+rho4

* I5)/(N3)))- I3 * (mu2+delta2);
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29 dy(8)=k1 * psi3-gamma1 * S2* (Gamma4* ((I5)/(N3))+Gamma5 * ((I3)/(N2))+Gamma6 * ((I2)

/(N1))+omega2 * A)-mu3 * S3;

30 dy(9)=k2 * psi3+gamma1 * S2* (Gamma4* ((I5)/(N3))+Gamma5 * ((I3)/(N2))+Gamma6 * ((I2)

/(N1))+omega2 * A)-gamma2 * E3-mu3* E3;

31 dy(10)=k3 * psi3+tau2 * gamma2* E3-gamma3* I4-I3 * (mu3+kappa2);

32 dy(11)=(1-tau2) * gamma2* E3+gamma3* I4-I5 * (mu3+delta3);

33 dy(12)=lambda4+eta1 * ((I2)/(N1))+eta2 * ((I5)/(N3))-mu4 * A;

1 function dy = m11_CHAP2(˜,y)

2 dy=zeros(size(y))

3 beta = 0.99; mu2 = 0.07; delta2= 0.03; lambda2 = 0.3; lambda1 = 0.1; theta1

= 0.6; theta2 = 0.78;

4 mu3 = 0.2; delta3 = 0.05; alpha2 = 0.95; alpha1 = 0.9; theta4 = 0.5; theta3

= 0.5;

5 mu1 = 0.04; delta1 = 0.04; alpha3 = 0.6; rho = 0.7;pi1=0.7;pi2=0.2;pi3=0.1;

psi1=0.09;varpi=0.1;Gamma1=0.019;omega1=0.8;kappa1=0.5;psi3=0.03;gamma1

=0.9;Gamma2=0.09;

6 omega2=0.04;kappa3=0.2;kappa2=0.013;gamma2=0.9;psi22=0.08;Gamma3=0.09;

Gamma4=0.029;psi21=0.008;lambda4=0.89;mu4=0.1;

7 tau1=0.6;alpha4 = 0.006;pi4=0.05;Gamma7=0.28; rho1=0.5;rho2=0.1;rho3=0.31;

rho4=0.09;Gamma8=0.6;k1=0.4;k2=0.4; k3=0.2;Gamma5=4.7;Gamma6=0.005;tau2

=0.4;gamma3=0.015;

8 eta1=0.37; eta2=0.89;

9 S1=y(1);

10 E1=y(2);

11 I1=y(3);

12 I2=y(4);

13 R1=y(5);

14 S2=y(6);

15 I3=y(7);

16 S3=y(8);

17 E3=y(9);

18 I4=y(10);

19 I5=y(11);

20 A=y(12);

21 N1=S1+E1+I1+I2+R1;

22 N2=S2+I3;

23 N3=S3+E3+I4+I5;

24 dy(1)=pi1 * psi1+varpi * R1 - alpha1 * S1* (Gamma1* ((I2)/(N1))+Gamma2 * ((I3)/(N2))+

Gamma3* ((I5)/(N3))+omega1 * A)- mu1 * S1;

25 dy(2)=pi2 * psi1+alpha1 * S1* (Gamma1* ((I2)/(N1))+Gamma2 * ((I3)/(N2))+Gamma3 * ((I5

)/(N3))+omega1 * A)-alpha2 * E1-mu1* E1;

26 dy(3)=pi3 * psi1+tau1 * alpha2 * E1-alpha3 * I1-I1 * (mu1+kappa1);

27 dy(4)=(1-tau1) * alpha2 * E1+rho * alpha3 * I1-alpha4 * I2-I2 * (mu1+delta1);
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28 dy(5)=pi4 * psi1+alpha4 * I2+(1-rho) * alpha3 * I1-varpi * R1-mu1* R1;

29 dy(6)=psi22-beta. * S2* (Gamma7* ((rho1 * I1+rho2 * I2)/(N1))+ Gamma8 * ((rho3 * I4+

rho4 * I5)/(N3)))-mu2 * S2;

30 dy(7)=psi21+beta. * S2* (Gamma7* ((rho1 * I1+rho2 * I2)/(N1))+ Gamma8 * ((rho3 * I4+

rho4 * I5)/(N3)))- I3 * (mu2+delta2);

31 dy(8)=k1 * psi3-gamma1 * S3* (Gamma4* ((I5)/(N3))+Gamma5 * ((I3)/(N2))+Gamma6 * ((I2)

/(N1))+omega2 * A)-mu3 * S3;

32 dy(9)=k2 * psi3+gamma1 * S3* (Gamma4* ((I5)/(N3))+Gamma5 * ((I3)/(N2))+Gamma6 * ((I2)

/(N1))+omega2 * A)-gamma2 * E3-mu3* E3;

33 dy(10)=k3 * psi3+tau2 * gamma2* E3-gamma3* I4-I3 * (mu3+kappa2);

34 dy(11)=(1-tau2) * gamma2* E3+gamma3* I4-I5 * (mu3+delta3);

35 dy(12)=lambda4+eta1 * ((I2)/(N1))+eta2 * ((I5)/(N3))-mu4 * A;

1 clear

2 tspan=[0 250]

3 y0=[1000, 800, 500, 100 ,50,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@END_CHAP2,tspan,y0)

5 figure(1)

6 plot(t,y(:,1), t,y(:,2), t,y(:,3),t,y(:,4),t,y(:,5))

7 legend(�Susceptible human�,�Exposed human�,�I_{HA}�,�I_{HB}�,�Recovered

human�)

8 xlabel(�Time[years]�)

9 ylabel(�Human Population�)

1 clear all

2 tspan=[0 30]

3 y0=[2000, 1500, 500, 300 ,2500,2000,200,8000,1000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(5)

6 plot(t,y(:,1), t,y(:,2), t,y(:,3),t,y(:,4),t,y(:,5), t,y(:,6), t,y(:,7),t,y

(:,8),t,y(:,9),t,y(:,10))

7 legend(�S_H�,�E_H�,�I_H�,�R_H�,�S_R�,�E_R�,�I_R�,�S_F�,�I_F�,�A�)

8 xlabel(�Time[years]�)

9 ylabel(�Population�)

1 clear

2 tspan=[0 500]

3 y0=[1000, 800, 500, 100 ,50,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@END_CHAP2,tspan,y0)

5 figure(2)

6 plot(t,y(:,8),t,y(:,9),t,y(:,10),t,y(:,11))

7 legend(�Susceptible rodent�,�Exposed rodent�,�I_{RA}�,�I_{RB}�)
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8 xlabel(�Time[years]�)

9 ylabel(�Rodent Population�)

1 clear

2 tspan=[0 250]

3 y0=[1000, 800, 500, 100 ,50,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@END_CHAP2,tspan,y0)

5 figure(3)

6 plot(t,y(:,6),t,y(:,7))

7 ylim([0 10000])

8 legend(�Susceptible flea �,�Infectious flea�)

9 xlabel(�Time[years]�)

10 ylabel(�Flea Population�)

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,50,1500,500,1000,500,200, 100, 2000]

4 [t,y]=ode45(@m11_CHAP2,tspan,y0)

5 figure(4)

6 plot(t,y(:,12))

7 legend(�Pathogens�)

8 xlabel(�Time[years]�)

9 ylabel(�Pathogens Population�)

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,50,1500,500,1000,500,200, 100, 2000]

4 [t,y]=ode45(@m11_CHAP2,tspan,y0)

5 figure(4)

6 plot(t,y(:,12))

7 legend(�Pathogens�)

8 xlabel(�Time[years]�)

9 ylabel(�Pathogens Population�)

10 hold on

11 figure(5)

12 plot( y(:,7),y(:,3))

13 xlabel(�Infected fleas�)

14 ylabel(�Infected Human with Bubonic Plague�)

15 title(�Effect of Encreased flea population to Human with Bubonic Plague �)

16 hold on

17 figure(6)

18 plot( y(:,7),y(:,10))
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19 xlabel(�Infected fleas�)

20 ylabel(�Infected Rodent with Bubonic Plague�)

21 title(�Effect of Encreased flea population to Rodent with Bubonic Plague �)

22 figure(7)

23 plot( y(:,12),y(:,4))

24 xlabel(�Pathogens Population�)

25 ylabel(�Infected Human with Pneumonic Plague�)

26 title(�Effect of Pathogens in the environment to Human with Pneumonic

Plague �)

27 figure(8)

28 plot( y(:,12),y(:,11))

29 xlabel(�Pathogens Population�)

30 ylabel(�Infected Rodent with Pneumonic Plague�)

31 title(�Effect of Pathogens in the environment to Rodent with Pneumonic

Plague �)

32 figure(9)

33 plot( y(:,11),y(:,4))

34 xlabel(�Infected Rodent with Pneumonic Plague�)

35 ylabel(�Infected Human with Pneumonic Plague�)

36 title(�Effect of rodent with pneumonic plague to human with Pneumonic

plague �)

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,50,1500,500,1000,500,200, 100, 2000]

4 [t,y]=ode45(@m11_CHAP2,tspan,y0)

5 figure(1)

6 plot( y(:,7),y(:,3))

7 xlabel(�Infected fleas�)

8 ylabel(�Infected Human with Bubonic Plague�)

9 title(�Effect of Encreased flea population to Human with Bubonic Plague �)

10

11 figure(2)

12 plot( y(:,7),y(:,10))

13 xlabel(�Infected fleas�)

14 ylabel(�Infected Rodent with Bubonic Plague�)

15 title(�Effect of Encreased flea population to Rodent with Bubonic Plague �)

16 figure(3)

17 plot( y(:,12),y(:,4))

18 xlabel(�Pathogens Population�)

19 ylabel(�Infected Human with Pneumonic Plague�)

20 title(�Effect of Pathogens in the environment to Human with Pneumonic

Plague �)

21 figure(4)
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22 plot( y(:,12),y(:,11))

23 xlabel(�Pathogens Population�)

24 ylabel(�Infected Rodent with Pneumonic Plague�)

25 title(�Effect of Pathogens in the environment to Rodent with Pneumonic

Plague �)

26 figure(5)

27 plot( y(:,11),y(:,4))

28 xlabel(�Infected Rodent with Pneumonic Plague�)

29 ylabel(�Infected Human with Pneumonic Plague�)

30 title(�Effect of rodent with pneumonic plague to human with Pneumonic

plague �)

31 figure(6)

32 plot( y(:,3),y(:,4))

33 xlabel(�Infected Human with Bubonic Plague�)

34 ylabel(�Infected Human with Pneumonic Plague�)

35 title(�Effect of Human with Bubonic plague to Human with Pneumonic plague �

)

36 figure(7)

37 plot( y(:,10),y(:,11))

38 xlabel(�Infected Rodent with Bubonic Plague�)

39 ylabel(�Infected Rodent with Pneumonic Plague�)

40 title(�Effect of Rodent with Bubonic plague to Rodent with Pneumonic plague

�)

41 figure(8)

42 plot( y(:,4),y(:,12))

43 xlabel(�Infected Human with Pneumonic Plague�)

44 ylabel(�Pathogens in the Environment�)

45 title(�Effect of Human with Pneumonic Plague to the number of Pathogens in

the Enviroment�)

46 figure(9)

47 plot( y(:,11),y(:,12))

48 xlabel(�Infected Rodent with Pneumonic Plague�)

49 ylabel(�Pathogens in the Environment�)

50 title(�Effect of Rodent with Pneumonic Plague to the number of Pathogens in

the Enviroment�)

51

52 figure(10)

53 plot( y(:,12),y(:,3), y(:,12),y(:,4), y(:,12),y(:,7), y(:,12),y(:,10),y

(:,12),y(:,11))

54 xlabel(�Pathogens in the Environment�)

55 ylabel(�Population�)

56 title(�Effect of Rodent with Pneumonic Plague to the number of Pathogens in

the Enviroment�)
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Appendix 3: Matlab Code for Chapter Five

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot(y(:,8), y(:,3),y(:,8),y(:,4),y(:,8),y(:,5),y(:,8),y(:,11),y(:,8),y

(:,12),y(:,8),y(:,13))

7 legend(�I_{HB}�,�I_{HS}�,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 xlabel(�Infected Flea�)

9 ylabel(�Infected Individual�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 0]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 N_1=y(:,3)+y(:,4)+y(:,5);

7 N_3=y(:,11)+y(:,12)+y(:,13);

8 plot( y(:,14),N_1,y(:,14),N_3)%,y(:,14),y(:,5),y(:,14),y(:,11),y(:,14),y

(:,12),y(:,14),y(:,13))

9 legend(�Infected Human�,�Infected Rodent�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{

RP}�)

10 xlabel(�Pathogens in soil/environment �)

11 ylabel(�Infected Individuals�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot( y(:,5),y(:,3),y(:,5),y(:,4))%,y(:,8),y(:,5),y(:,8),y(:,11),y(:,8),y

(:,12),y(:,8),y(:,13))

7 legend(�I_{HB}�,�I_{HS}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 ylabel(�Infected Human with I_{HB} or I_{HS} �)

9 xlabel(�Infected Human with Pneumonic Plague�)

268



1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot( y(:,5),y(:,5),y(:,5),y(:,13))%,y(:,8),y(:,5),y(:,8),y(:,11),y(:,8),y

(:,12),y(:,8),y(:,13))

7 legend(�I_{HP}�,�I_{RP}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 ylabel(�Individuals with Pneumonic plague�)

9 xlabel(�Infected Human with Pneumonic Plague�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot( y(:,13),y(:,13),y(:,13),y(:,5))%,y(:,8),y(:,5),y(:,8),y(:,11),y(:,8),

y(:,12),y(:,8),y(:,13))

7 legend(�I_{RP}�,�I_{HP}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 ylabel(�Individuals with Pneumonic plague �)

9 xlabel(�Infected Rodent with Pneumonic Plague�)

1 function dy =m11(t,y)

2 dy=zeros(size(y))

3 re=1000;c=3;rho=0.02;g=0,25;u=0.02;k=0.4;si=0.5;tau=0.3;v=0.5;de=0.45;B

=0.15;n1=0.2;n2=0.12;n3=0.15;r=0.3;

4 S=y(1);

5 I=y(2);

6 P=y(3);

7 T=y(4);

8 A=y(5);

9 L=c * B* (I+n1 * P+n2* T+n3* A)/(1+r * (I+n1 * P+n2* T+n3* A));

10 dy(1)=re-(1-rho) * L* S-u * S;

11 dy(2)=(1-rho) * L* S-(g+u) * I;

12 dy(3)=g * I-(k+si+u) * P;

13 dy(4)=k * P-(tau * (1-v)+u) * T;

14 dy(5)=si * P+tau * (1-v) * T-(de+u) * A

1 function dy = m11_CHAP3_new(˜,y)

2 dy=zeros(size(y))

3 beta = 0.99; mu2 = 0.07; delta2= 0.03; lambda2 = 0.3; lambda1 = 0.1; theta1

= 0.6; theta2 = 0.78; mu3 = 1; delta3 = 0.05; alpha2 = 0.95;
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4 alpha1 = 0.99; theta4 = 0.5; theta3 = 0.5; mu1 = 0.04; delta1 = 0.5; alpha3

= 0.038; rho = 0.2;pi2=0.2;pi3=0.1;psi1=100.9500;varpi=0.33;

5 omega1=0.58;kappa1=0.5;psi3=0.03;gamma1=0.925;omega2=0.004;kappa3=0.2;

kappa2=0.013;gamma2=0.982;psi22=1000;psi21=2500;

6 lambda4=50,000;mu4=0.1;alpha4 = 0.23;pi4=0.05; rho3=0.5;rho4=0.09;k2=0.4;

k3=0.2;gamma3=0.194; eta1=0.2; eta2=0.4;

7 sigma1=0.5;sigma2=0.5;delta1b=0.04;delta1s=0.06911;delta1p=0.63; delta3b

=0.1;delta3s=0.09;delta3p=0.14;Gamma1=0.5;Gamma2=0.85;Gamma3=0.0641;

Gamma4=0.805;

8 Gamma5=0.805;Gamma6=0.00005;Gamma7=0.00008;Gamma8=0.0641;Gamma9=0.9;Gamma10

=0.9;Gamma11=0.1;Gamma12=0.1;Gamma13=0.99;Gamma14=0.1;nu1=0.3; nu2=0.4;

9 nu3=0.3;xi=0.71; alpha5=0.4;tau3=0.4;tau2=0.3;tau1=0.3;phi=0.5;gamma4=0.05;

rho1=0.3;rho2=0.2;

10

11 S1=y(1);E1=y(2);I1=y(3);I2=y(4);I3=y(5);R1=y(6);S2=y(7);I4=y(8);S3=y(9);E3=

y(10);I5=y(11);I6=y(12);I7=y(13);A=y(14);N1=S1+E1+I1+I2+I3+R1; N2=S2+I4;

12 N3=S3+E3+I5+I6+I7;

13 G1=(Gamma1.* I3+Gamma2. * I2)./N1+(Gamma3. * I4)./N2+(Gamma4. * I7+Gamma5. * I6)./N3

+omega1. * A;

14 G2=(Gamma6* I3+Gamma7* I2)/N1+(Gamma8 * I4)/N2+(Gamma9 * I7+Gamma10* I6)/N3+omega2

. * A;

15 G3=(Gamma11* I1+Gamma12* I2)/N1+(Gamma13 * I5+Gamma14* I6)/N3;

16 dy(1)=sigma1 * psi1+varpi * R1 - alpha1 * S1* (G1)- mu1 * S1;

17 dy(2)=(1-sigma1) * psi1+alpha1 * S1* (G1)-alpha2 * E1-mu1* E1;

18 dy(3)=nu2 * alpha2 * E1-alpha3 * I1-I1 * (mu1+delta1b);

19 dy(4)=nu3 * alpha2 * E1+rho3 * alpha3 * I1-alpha4 * I2-I2 * (mu1+delta1s);

20 dy(5)=nu1 * alpha2 * E1+rho1 * alpha3 * I1+alpha4 * xi * I2 -alpha5 * I3-I3 * (mu1+delta1p)

;

21 dy(6)=alpha3 * rho2 * I2+alpha4 * (1-xi) * I2+alpha5 * I3-(varpi+mu1) * R1;

22 dy(7)=psi22-beta * S2* (G3)-mu2 * S2;

23 dy(8)=psi21+beta * S2* (G3)- I4 * (mu2+delta2);

24 dy(9)=sigma2 * psi3-gamma1 * S3* (G2)-mu3 * S3;

25 dy(10)=(1-sigma2) * psi3+gamma1 * S3* (G2)-gamma2 * E3-mu3* E3;

26 dy(11)=gamma2 * tau3 * E3-gamma3* I5-I5 * (mu3+delta3b);

27 dy(12)=tau2 * gamma2* E3+gamma3* (1-phi) * I5-gamma4 * I6-I6 * (mu3+delta3s);

28 dy(13)=tau1 * gamma2* E3+gamma3* phi * I5+gamma4* I6-I7 * (mu3+delta3p);

29 dy(14)=lambda4+eta1 * ((I3)/(N1))+eta2 * ((I7)/(N3))-mu4 * A;

1 clear

2 tspan=[0 50]

3 y0=[1000, 900, 200, 100 ,50,100,300000,2000,7000,500,1000,800, 500,300,

5000]

4 [t,y]=ode45(@m11_CHAP3_new,tspan,y0)

5 figure(1)
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6 plot(y(:,1), y(:,2));%, t,y(:,3),t,y(:,4),t,y(:,5),t,y(:,6))

7 legend(�Susceptible human�,�Exposed human�,�I_{HB}�,�I_{HS}�,�I_{HP}�,�

Recovered human�)

8 xlabel(�Time[years]�)

9 ylabel(�Human Population�)

1 clear all

2 tspan=[0 30]

3 y0=[2000, 1500, 500, 300 ,2500,2000,200,8000,1000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(5)

6 plot(t,y(:,1), t,y(:,2), t,y(:,3),t,y(:,4),t,y(:,5), t,y(:,6), t,y(:,7),t,y

(:,8),t,y(:,9),t,y(:,10))

7 legend(�S_H�,�E_H�,�I_H�,�R_H�,�S_R�,�E_R�,�I_R�,�S_F�,�I_F�,�A�)

8 xlabel(�Time[years]�)

9 ylabel(�Population�)

1 clear

2 tspan=[0 50]

3 y0=[800, 600, 500, 100 ,50,100,300000,2000,7000,500,1000,800, 500,300,

5000]

4 [t,y]=ode45(@m11_CHAP3_new,tspan,y0)

5 figure(2)

6 plot(t,y(:,9),t,y(:,10),t,y(:,11),t,y(:,12),t,y(:,13))

7 legend(�Susceptible rodent�,�Exposed rodent�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 xlabel(�Time[years]�)

9 ylabel(�Rodent Population�)

1 clear

2 tspan=[0 50]

3 y0=[800, 600, 500, 100 ,50,100,80000,20000,7000,500,1000,800, 500,300, 50]

4 [t,y]=ode45(@m11_CHAP3_new,tspan,y0)

5 figure(3)

6 plot(t,y(:,7),t,y(:,8))

7 legend(�Susceptible flea �,�Infectious flea�)

8 xlabel(�Time[years]�)

9 ylabel(�Flea Population�)

1 clear

2 tspan=[0 100]
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3 y0=[800, 600, 500, 100 ,50,100,300000,2000,7000,500,1000,800, 500,300,

5000]

4 [t,y]=ode45(@m11_CHAP3_new,tspan,y0)

5 figure(4)

6 plot(t,y(:,12))

7 legend(�Pathogens�)

8 xlabel(�Time[years]�)

9 ylabel(�Pathogens Population�)

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,50,1500,500,1000,500,200, 100, 2000]

4 [t,y]=ode45(@m11_CHAP2,tspan,y0)

5 figure(4)

6 plot(t,y(:,12))

7 legend(�Pathogens�)

8 xlabel(�Time[years]�)

9 ylabel(�Pathogens Population�)

10 hold on

11 figure(5)

12 plot( y(:,7),y(:,3))

13 xlabel(�Infected fleas�)

14 ylabel(�Infected Human with Bubonic Plague�)

15 title(�Effect of Encreased flea population to Human with Bubonic Plague �)

16 hold on

17 figure(6)

18 plot( y(:,7),y(:,10))

19 xlabel(�Infected fleas�)

20 ylabel(�Infected Rodent with Bubonic Plague�)

21 title(�Effect of Encreased flea population to Rodent with Bubonic Plague �)

22 figure(7)

23 plot( y(:,12),y(:,4))

24 xlabel(�Pathogens Population�)

25 ylabel(�Infected Human with Pneumonic Plague�)

26 title(�Effect of Pathogens in the environment to Human with Pneumonic

Plague �)

27 figure(8)

28 plot( y(:,12),y(:,11))

29 xlabel(�Pathogens Population�)

30 ylabel(�Infected Rodent with Pneumonic Plague�)

31 title(�Effect of Pathogens in the environment to Rodent with Pneumonic

Plague �)

32 figure(9)

33 plot( y(:,11),y(:,4))
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34 xlabel(�Infected Rodent with Pneumonic Plague�)

35 ylabel(�Infected Human with Pneumonic Plague�)

36 title(�Effect of rodent with pneumonic plague to human with Pneumonic

plague �)

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,50,1500,500,1000,500,200, 100, 2000]

4 [t,y]=ode45(@m11_CHAP2,tspan,y0)

5 figure(1)

6 plot( y(:,7),y(:,3))

7 xlabel(�Infected fleas�)

8 ylabel(�Infected Human with Bubonic Plague�)

9 title(�Effect of Encreased flea population to Human with Bubonic Plague �)

10

11 figure(2)

12 plot( y(:,7),y(:,10))

13 xlabel(�Infected fleas�)

14 ylabel(�Infected Rodent with Bubonic Plague�)

15 title(�Effect of Encreased flea population to Rodent with Bubonic Plague �)

16 figure(3)

17 plot( y(:,12),y(:,4))

18 xlabel(�Pathogens Population�)

19 ylabel(�Infected Human with Pneumonic Plague�)

20 title(�Effect of Pathogens in the environment to Human with Pneumonic

Plague �)

21 figure(4)

22 plot( y(:,12),y(:,11))

23 xlabel(�Pathogens Population�)

24 ylabel(�Infected Rodent with Pneumonic Plague�)

25 title(�Effect of Pathogens in the environment to Rodent with Pneumonic

Plague �)

26 figure(5)

27 plot( y(:,11),y(:,4))

28 xlabel(�Infected Rodent with Pneumonic Plague�)

29 ylabel(�Infected Human with Pneumonic Plague�)

30 title(�Effect of rodent with pneumonic plague to human with Pneumonic

plague �)

31 figure(6)

32 plot( y(:,3),y(:,4))

33 xlabel(�Infected Human with Bubonic Plague�)

34 ylabel(�Infected Human with Pneumonic Plague�)

35 title(�Effect of Human with Bubonic plague to Human with Pneumonic plague �

)
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36 figure(7)

37 plot( y(:,10),y(:,11))

38 xlabel(�Infected Rodent with Bubonic Plague�)

39 ylabel(�Infected Rodent with Pneumonic Plague�)

40 title(�Effect of Rodent with Bubonic plague to Rodent with Pneumonic plague

�)

41 figure(8)

42 plot( y(:,4),y(:,12))

43 xlabel(�Infected Human with Pneumonic Plague�)

44 ylabel(�Pathogens in the Environment�)

45 title(�Effect of Human with Pneumonic Plague to the number of Pathogens in

the Enviroment�)

46 figure(9)

47 plot( y(:,11),y(:,12))

48 xlabel(�Infected Rodent with Pneumonic Plague�)

49 ylabel(�Pathogens in the Environment�)

50 title(�Effect of Rodent with Pneumonic Plague to the number of Pathogens in

the Enviroment�)

51 figure(10)

52 plot( y(:,12),y(:,3), y(:,12),y(:,4), y(:,12),y(:,7), y(:,12),y(:,10),y

(:,12),y(:,11))

53 xlabel(�Pathogens in the Environment�)

54 ylabel(�Population�)

55 title(�Effect of Rodent with Pneumonic Plague to the number of Pathogens in

the Enviroment�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot( y(:,13),y(:,11),y(:,13),y(:,12))%,y(:,8),y(:,5),y(:,8),y(:,11),y(:,8)

,y(:,12),y(:,8),y(:,13))

7 legend(�I_{RB}�,�I_{RS}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 ylabel(�Infected Rodent with I_{HB} or I_{HS} �)

9 xlabel(�Infected Rodent with Pneumonic Plague�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot( y(:,11),y(:,3),y(:,12),y(:,3),y(:,13),y(:,3))%,y(:,8),y(:,5),y(:,8),y
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(:,11),y(:,8),y(:,12),y(:,8),y(:,13))

7 legend(�I_{RB}�,�I_{RS}�,�I_{RP}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 xlabel(�Infected Rodent �)

9 ylabel(�Infected Human with Bubonic Plague�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot( y(:,11),y(:,4),y(:,12),y(:,4),y(:,13),y(:,4))%,y(:,8),y(:,5),y(:,8),y

(:,11),y(:,8),y(:,12),y(:,8),y(:,13))

7 legend(�I_{RB}�,�I_{RS}�,�I_{RP}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 xlabel(�Infected Rodent �)

9 ylabel(�Infected Human with Septicemic Plague�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 0]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 N_1=y(:,3)+y(:,4)+y(:,5);

7 N_3=y(:,11)+y(:,12)+y(:,13);

8 plot( y(:,14),N_1,y(:,14),N_3)%,y(:,14),y(:,5),y(:,14),y(:,11),y(:,14),y

(:,12),y(:,14),y(:,13))

9 legend(�Infected Human�,�Infected Rodent�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{

RP}�)

10 xlabel(�Pathogens in soil/environment �)

11 ylabel(�Infected Individuals�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot( y(:,3),y(:,11),y(:,4),y(:,11),y(:,5),y(:,11))%,y(:,8),y(:,5),y(:,8),y

(:,11),y(:,8),y(:,12),y(:,8),y(:,13))

7 legend(�I_{HB}�,�I_{HS}�,�I_{HP}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 xlabel(�Infected Human �)

9 ylabel(�Infected Rodent with Bubonic Plague�)
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1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot( y(:,3),y(:,12),y(:,4),y(:,12),y(:,5),y(:,12))%,y(:,8),y(:,5),y(:,8),y

(:,11),y(:,8),y(:,12),y(:,8),y(:,13))

7 legend(�I_{HB}�,�I_{HS}�,�I_{HP}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 xlabel(�Infected Human �)

9 ylabel(�Infected Rodent with Septicemic Plague�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 plot( y(:,3),y(:,13),y(:,4),y(:,13),y(:,5),y(:,13))%,y(:,8),y(:,5),y(:,8),y

(:,11),y(:,8),y(:,12),y(:,8),y(:,13))

7 legend(�I_{HB}�,�I_{HS}�,�I_{HP}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

8 xlabel(�Infected Human �)

9 ylabel(�Infected Rodent with Pneumonic Plague�)

1 clear

2 tspan=[0 50]

3 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000]

4 [t,y]=ode45(@m11_CHAP3,tspan,y0)

5 figure(1)

6 N_1=y(:,3)+y(:,4)+y(:,5);

7 N_3=y(:,11)+y(:,12)+y(:,13);

8 plot( N_1,N_3)%,y(:,8),y(:,5),y(:,8),y(:,11),y(:,8),y(:,12),y(:,8),y(:,13))

9 %legend(�I_{HB}�,�I_{HS}�,�I_{HP}�)%,�I_{HP}�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

10 xlabel(�Infected Human�)

11 ylabel(�Infected Rodent�)
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Appendix 4: Matlab Code for Chapters Six & Seven

1

2 function dy = chap4(t,y)

3 global alpha2_1 alpha3_1 alpha4_1 alpha5_1 alpha2 Gamma1_0 Gamma1_1

Gamma2_0 Gamma2_1 Gamma3_0 Gamma3_1 Gamma4_0 Gamma4_1 Gamma5_0 Gamma5_1

Gamma6_0 Gamma6_1 Gamma7_0 Gamma7_1 Gamma8_0 Gamma8_1 Gamma9_0 Gamma9_1

Gamma10_0 Gamma10_1 Gamma11_0 Gamma11_1 Gamma12_0 Gamma12_1 Gamma13_0

Gamma13_1 Gamma14_0 Gamma14_1 eta1_0 eta1_1 eta2_0 eta2_1 omega1_0

omega1_1 omega2_0 omega2_1 alpha3 alpha4 alpha5

4

5 beta = 0.99; mu2 = 0.07; delta2= 0.03; lambda2 = 0.3; lambda1 = 0.1; theta1

= 0.6; theta2 = 0.78; mu3 = 1; delta3 = 0.05; alpha2 = 0.95;

6 alpha1 = 0.99; theta4 = 0.5; theta3 = 0.5; mu1 = 0.04; delta1 = 0.5; alpha3

= 0.038; rho = 0.2;pi2=0.2;pi3=0.1;psi1=100.9500;varpi=0.33;

7 kappa1=0.5;psi3=0.03;gamma1=0.925;kappa3=0.2;kappa2=0.013;gamma2=0.982;

psi22=1000;psi21=2500;

8 lambda4=50,000;mu4=0.1;alpha4 = 0.23;pi4=0.05; rho3=0.5;rho4=0.09;k2=0.4;

k3=0.2;gamma3=0.194;

9 sigma1=0.5;sigma2=0.5;delta1b=0.04;delta1s=0.06911;delta1p=0.63; delta3b

=0.1;delta3s=0.09;delta3p=0.14;

10 nu1=0.3; nu2=0.4; nu3=0.3;xi=0.71; alpha5=0.4;tau3=0.4;tau2=0.3;tau1=0.3;

phi=0.5;gamma4=0.05;rho1=0.3;rho2=0.2;

11

12 sigma1=0.5;sigma2=0.5;delta1b=0.05;delta1s=0.06911;delta1p=0.07; delta3b

=0.1;delta3s=0.0471;

13 delta3p=0.14;nu1=0.3; nu2=0.4; nu3=0.3;

14 xi=0.71; alpha5=0.17;tau3=0.4;tau2=0.3;tau1=0.3;phi=0.5;gamma4=0.05;rho1

=0.3;rho2=0.2;

15 %baseline value (Time avaraged value)

16 Gamma1_0=0.5;Gamma2_0=0.85;Gamma3_0=0.0641;Gamma4_0=0.805;Gamma5_0=0.805;

Gamma6_0=0.00005;

17 Gamma7_0=0.00008;Gamma8_0=0.0641;Gamma9_0=0.9;Gamma10_0=0.9;Gamma11_0=0.1;

Gamma12_0=0.1;

18 Gamma13_0=0.99;Gamma14_0=0.1;omega1_0=0.58;omega2_0=0.004;eta1_0=0.2;

eta2_0=0.4;

19 %Relative amplitude of the seasonal oscillator it ranges between 0 and 1

20 Gamma1_1=0.7;Gamma2_1=0.7;Gamma3_1=0.7;Gamma4_1=0.7;Gamma5_1=0.7;Gamma6_1

=0.7;Gamma7_1=0.7;
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21 Gamma8_1=0.7;Gamma9_1=0.7;alpha3_1=0.7;alpha4_1=0.7;alpha5_1=0.7;

22 Gamma10_1=0.7;Gamma11_1=0.7;Gamma12_1=0.7;Gamma13_1=0.7;Gamma14_1=0.7;

omega1_1=0.7;omega2_1=0.7;

23 eta1_1=0.7; eta2_1=0.7;alpha2_1 = 0.5;

24

25 S1=y(1);E1=y(2);I1=y(3);I2=y(4);I3=y(5);R1=y(6);S2=y(7);I4=y(8);S3=y(9);E3=

y(10);I5=y(11);I6=y(12);

26 I7=y(13);A=y(14);tt=y(15);N1=S1+E1+I1+I2+I3+R1; N2=S2+I4; N3=S3+E3+I5+I6+I7

;

27 k22= ((alpha3. * rho3)./(alpha3. * rho3+mu1)+(alpha2. * nu3)./(alpha2. * nu3)./(

alpha2. * nu3+mu1)). * (Gamma2(tt))./(alpha4+mu1+delta1s);

28 G1=(Gamma1(tt). * I3+Gamma2(tt). * I2)./N1+(Gamma3(tt). * I4)./N2+(Gamma4(tt). * I7

+Gamma5(tt). * I6)./N3+omega1(tt). * A;

29 G2=(Gamma6(tt). * I3+Gamma7(tt). * I2)./N1+(Gamma8(tt). * I4)./N2+(Gamma9(tt). * I7

+Gamma10(tt) * I6)./N3+omega2(tt). * A;

30 G3=(Gamma11(tt). * I1+Gamma12(tt). * I2)/N1+(Gamma13(tt). * I5 + Gamma14(tt). * I6)

./N3;

31 dS1=sigma1 * psi1+varpi * R1 - alpha1 * S1. * (G1)- mu1 * S1;

32 dE1=(1-sigma1) * psi1+alpha1 * S1. * (G1)-alpha2 * E1-mu1* E1;

33 dI1=nu2 * alpha2 * E1-alpha3 * I1-I1 * (mu1+delta1b);

34 dI2=nu3 * alpha2 * E1+rho3 * alpha3 * I1-alpha4 * I2-I2 * (mu1+delta1s);

35 dI3=nu1 * alpha2 * E1+rho1 * alpha3 * I1+alpha4 * xi * I2 -alpha5 * I3-I3 * (mu1+delta1p);

36 dR1=alpha3. * rho2. * I2+alpha4. * (1-xi). * I2+alpha5. * I3-(varpi+mu1). * R1;

37 dS2=psi22-beta. * S2. * (G3)-mu2 * S2;

38 dI4=psi21+beta. * S2. * (G3)- I4 * (mu2+delta2);

39 dS3=sigma2 * psi3-gamma1 * S3* (G2)-mu3 * S3;

40 dE3=(1-sigma2) * psi3+gamma1 * S3* (G2)-gamma2 * E3-mu3* E3;

41 dI5=gamma2* tau3 * E3-gamma3* I5-I5 * (mu3+delta3b);

42 dI6=tau2 * gamma2* E3+gamma3* (1-phi) * I5-gamma4 * I6-I6 * (mu3+delta3s);

43 dI7=tau1 * gamma2* E3+gamma3* phi * I5+gamma4* I6-I7 * (mu3+delta3p);

44 dA=lambda4+eta1(tt). * ((I3)/(N1))+eta2(tt). * ((I7)/(N3))-mu4 * A;

45 ds=0.2;

46 dy = [dS1;dE1;dI1;dI2;dI3;dR1;dS2;dI4;dS3;dE3;dI5;dI6;dI7;dA;ds];

1 global Gamma1_0 Gamma1_1 Gamma2_0 Gamma2_1 Gamma3_0 Gamma3_1 Gamma4_0

Gamma4_1 Gamma5_0 Gamma5_1 Gamma6_0 Gamma6_1 Gamma7_0 Gamma7_1 Gamma8_0

Gamma8_1 Gamma9_0 Gamma9_1 Gamma10_0 Gamma10_1 Gamma11_0 Gamma11_1

Gamma12_0 Gamma12_1 Gamma13_0 Gamma13_1 Gamma14_0 Gamma14_1 eta1_0

eta1_1 eta2_0 eta2_1 omega1_0 omega1_1 omega2_0 omega2_1

2 options = odeset(�MaxStep�,0.01);

3 [t,y] = ode45(�chap4�,[0 50],[1000, 800, 500, 100, 50, 100, 100, 2000,

1000, 5000,1000,800, 500, 5000,0],options);

4 figure(1)

5 plot(t,y(:,1), t,y(:,2), t,y(:,3),t,y(:,4),t,y(:,5),t,y(:,6));
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6 legend(�Susceptible human�,�Exposed human�,�I_{HB}�,�I_{HS}�,�I_{HP}�,�

Recovered human�)

7 xlabel(�Time[years]�)

8 ylabel(�Human Population�)

1 global Gamma1_0 Gamma1_1 Gamma2_0 Gamma2_1 Gamma3_0 Gamma3_1 Gamma4_0

Gamma4_1 Gamma5_0 Gamma5_1 Gamma6_0 Gamma6_1 Gamma7_0 Gamma7_1 Gamma8_0

Gamma8_1 Gamma9_0 Gamma9_1 Gamma10_0 Gamma10_1 Gamma11_0 Gamma11_1

Gamma12_0 Gamma12_1 Gamma13_0 Gamma13_1 Gamma14_0 Gamma14_1 eta1_0

eta1_1 eta2_0 eta2_1 omega1_0 omega1_1 omega2_0 omega2_1

2 options = odeset(�MaxStep�,0.01);

3 [t,y] = ode45(�chap4�,[0 50],[1000, 800, 500, 100

,50,100,40000,2000,1000,5000,1000,800, 500, 5000,0],options);

4 figure(1)

5 plot(t,k22)

1 global Gamma1_0 Gamma1_1 Gamma2_0 Gamma2_1 Gamma3_0 Gamma3_1 Gamma4_0

Gamma4_1 Gamma5_0 Gamma5_1 Gamma6_0 Gamma6_1 Gamma7_0 Gamma7_1 Gamma8_0

Gamma8_1 Gamma9_0 Gamma9_1 Gamma10_0 Gamma10_1 Gamma11_0 Gamma11_1

Gamma12_0 Gamma12_1 Gamma13_0 Gamma13_1 Gamma14_0 Gamma14_1 eta1_0

eta1_1 eta2_0 eta2_1 omega1_0 omega1_1 omega2_0 omega2_1

2

3 options = odeset(�MaxStep�,0.01);

4 [t,y] = ode45(�chap4�,[0 50],[1000, 800, 500, 100

,50,100,100,2000,1000,5000,1000,800, 500, 5000,0],options);

5 figure(1)

6 plot(t,y(:,14));

7 xlabel(�Time[years]�)

8 ylabel(�Pathodens in the environment�)

1 global Gamma1_0 Gamma1_1 Gamma2_0 Gamma2_1 Gamma3_0 Gamma3_1 Gamma4_0

Gamma4_1 Gamma5_0 Gamma5_1 Gamma6_0 Gamma6_1 Gamma7_0 Gamma7_1 Gamma8_0

Gamma8_1 Gamma9_0 Gamma9_1 Gamma10_0 Gamma10_1 Gamma11_0 Gamma11_1

Gamma12_0 Gamma12_1 Gamma13_0 Gamma13_1 Gamma14_0 Gamma14_1 eta1_0

eta1_1 eta2_0 eta2_1 omega1_0 omega1_1 omega2_0 omega2_1

2 options = odeset(�MaxStep�,0.01);

3 [t,y] = ode45(�chap4�,[0 50],[1000, 800, 500, 100

,50,100,100,2000,1000,5000,1000,800, 500, 5000,0],options);

4 figure(1)

5 plot(t,y(:,9), t,y(:,10), t,y(:,11),t,y(:,12),t,y(:,13));

6 legend(�Susceptible rodent�,�Exposed rodent�,�I_{RB}�,�I_{RS}�,�I_{RP}�)

7 xlabel(�Time[years]�)
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8 ylabel(�Rodent Population�)

1 global Gamma1_0 Gamma1_1 Gamma2_0 Gamma2_1 Gamma3_0 Gamma3_1 Gamma4_0

Gamma4_1 Gamma5_0 Gamma5_1 Gamma6_0 Gamma6_1 Gamma7_0 Gamma7_1 Gamma8_0

Gamma8_1 Gamma9_0 Gamma9_1 Gamma10_0 Gamma10_1 Gamma11_0 Gamma11_1

Gamma12_0 Gamma12_1 Gamma13_0 Gamma13_1 Gamma14_0 Gamma14_1 eta1_0

eta1_1 eta2_0 eta2_1 omega1_0 omega1_1 omega2_0 omega2_1

2 options = odeset(�MaxStep�,0.01);

3 [t,y] = ode45(�chap4�,[0 50],[1000, 800, 500, 100

,50,100,100,2000,1000,5000,1000,800, 500, 5000,0],options);

4 figure(1)

5 plot(y(:,7),y(:,8));

6 xlabel(�Susceptible Flea�)

7 ylabel(�Infectious Flea�)

1 global Gamma1_0 Gamma1_1 Gamma2_0 Gamma2_1 Gamma3_0 Gamma3_1 Gamma4_0

Gamma4_1 Gamma5_0 Gamma5_1 Gamma6_0 Gamma6_1 Gamma7_0 Gamma7_1 Gamma8_0

Gamma8_1 Gamma9_0 Gamma9_1 Gamma10_0 Gamma10_1 Gamma11_0 Gamma11_1

Gamma12_0 Gamma12_1 Gamma13_0 Gamma13_1 Gamma14_0 Gamma14_1 eta1_0

eta1_1 eta2_0 eta2_1 omega1_0 omega1_1 omega2_0 omega2_1

2 options = odeset(�MaxStep�,0.01);

3 [t,y] = ode45(�chap4_try�,[0 50],[1000, 800, 500, 100

,50,100,100,2000,1000,5000,1000,800, 500, 5000,0],options);

4 sss1=y(:,3)+y(:,4)+y(:,5);

5 figure(1)

6 plot3(y(:,1), y(:,2), sss1);

7 xlabel(�Susceptible human�)

8 ylabel(�Exposed human�)

9 zlabel(�Infectious Human�)

1 global Gamma1_0 Gamma1_1 Gamma2_0 Gamma2_1 Gamma3_0 Gamma3_1 Gamma4_0

Gamma4_1 Gamma5_0 Gamma5_1 Gamma6_0 Gamma6_1 Gamma7_0 Gamma7_1 Gamma8_0

Gamma8_1 Gamma9_0 Gamma9_1 Gamma10_0 Gamma10_1 Gamma11_0 Gamma11_1

Gamma12_0 Gamma12_1 Gamma13_0 Gamma13_1 Gamma14_0 Gamma14_1 eta1_0

eta1_1 eta2_0 eta2_1 omega1_0 omega1_1 omega2_0 omega2_1

2 options = odeset(�MaxStep�,0.01);

3 [t,y] = ode45(�chap4�,[0 50],[1000, 800, 500, 100

,50,100,100,2000,10000,5000,1000,800, 500, 5000,0],options);

4 sss2=y(:,11)+y(:,12)+y(:,13);

5 figure(1)

6 plot3(y(:,9), y(:,10), sss2);

7 xlabel(�Susceptible rodent�)
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8 ylabel(�Exposed rodent�)

9 zlabel(�Infectious rodent�)

4.1 Varying Initials

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

4 [t,y]=ode45(@chap4,tspan,y0)

5 figure(1)

6 plot(t,y(:,14),�b�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Pathogens in the Environment�)

9 hold on

10 tspan=[0 100]

11 y0=[1000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 4000,0]

12 [t,y]=ode45(@chap4,tspan,y0)

13 figure(1)

14 plot(t,y(:,14),�r�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Pathogens in the Environment�)

17 hold on

18 clear

19 tspan=[0 100]

20 y0=[1000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 3000,0]

21 [t,y]=ode45(@chap4,tspan,y0)

22 figure(1)

23 plot(t,y(:,14),�g�,�linewidth�,2)

24 xlabel(�Time[years]�)

25 ylabel(�Pathogens in the Environment�)

26 hold on

27 clear

28 tspan=[0 100]

29 y0=[1000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 2000,0]

30 [t,y]=ode45(@chap4,tspan,y0)

31 figure(1)

32 plot(t,y(:,14),�k�,�linewidth�,2)

33 xlabel(�Time[years]�)

34 ylabel(�Pathogens in the Environment�)

35 hold on

36 clear

37 tspan=[0 100]

38 y0=[1000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 1000,0]
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39 [t,y]=ode45(@chap4,tspan,y0)

40 figure(1)

41 plot(t,y(:,14),�m�,�linewidth�,2)

42 xlabel(�Time[years]�)

43 ylabel(�Pathogens in the Environment�)

44 hold on

45 clear

46 tspan=[0 100]

47 y0=[1000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 10,0]

48 [t,y]=ode45(@chap4,tspan,y0)

49 figure(1)

50 plot(t,y(:,14),�y�,�linewidth�,2)

51 xlabel(�Time[years]�)

52 ylabel(�Pathogens in the Environment�)

53 hold off

54 legend(�A(0)= 5000�,�A(0)= 4000�,�A(0)= 3000�, �A(0)= 2000�,�A(0)= 1000�,�A

(0)= 10�)

1 clear

2 tspan=[0 50]

3 y0=[1000, 1800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

4 [t,y]=ode45(@chap4,tspan,y0)

5 figure(1)

6 plot(t,y(:,5),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�I_{HP}�)

9 hold on

10 tspan=[0 50]

11 y0=[1000, 1500, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

12 [t,y]=ode45(@chap4,tspan,y0)

13 figure(1)

14 plot(t,y(:,5),�c�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�I_{HP}�)

17 hold on

18 tspan=[0 50]

19 y0=[1000, 1000, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

20 [t,y]=ode45(@chap4,tspan,y0)

21 figure(1)

22 plot(t,y(:,5),�m�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�I_{HP}�)

25 hold on

26 tspan=[0 50]
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27 y0=[1000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

28 [t,y]=ode45(@chap4,tspan,y0)

29 figure(1)

30 plot(t,y(:,5),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�I_{HP}�)

33 hold on

34 tspan=[0 50]

35 y0=[1000, 400, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

36 [t,y]=ode45(@chap4,tspan,y0)

37 figure(1)

38 plot(t,y(:,5),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�I_{HP}�)

41 hold on

42 tspan=[0 50]

43 y0=[1000, 10, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

44 [t,y]=ode45(@chap4,tspan,y0)

45 figure(1)

46 plot(t,y(:,5),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�I_{HP}�)

49 hold off

50 legend(�E_H(0)= 1800�,�E_H(0)= 1500�,�E_H(0)= 1000�,�E_H(0)= 800�, �E_H(0)=

500�,�E_H(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 300 ,5000,5000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,6),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Exposed rodent�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 500, 300 ,5000,4000,2000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,6),�y�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Exposed rodent�)

17 hold on

18 tspan=[0 100]

283



19 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,6),�m�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Exposed rodent�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 500, 300 ,5000,2000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,6),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Exposed rodent�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,5000,1000,2000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,6),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Exposed rodent�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 500, 300 ,5000,10,2000,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,6),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Exposed rodent�)

49 hold off

50 legend(�E_R(0)= 5000�,�E_R(0)= 4000�,�E_R(0)= 3000�, �E_R(0)= 2000�,�E_R(0)

= 1000�,�E_R(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,9),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Infected flea�)

9 hold on

10 tspan=[0 100]

284



11 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,4000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,9),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Infected flea�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,3000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,9),�y�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Infected flea�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,2000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,9),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Infected flea�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,1000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,9),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Infected flea�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,10,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,9),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Infected flea�)

49 hold off

50 legend(�I_F(0)= 5000�,�I_F(0)= 4000�,�I_F(0)= 3000�, �I_F(0)= 2000�,�I_F(0)

= 1000�,�I_F(0)= 10�)

1 clear

2 tspan=[0 100]
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3 y0=[1800, 1500, 2800, 300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,3),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Infected human�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 1800, 300 ,5000,3000,2000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,3),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Infected human�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 1200, 300 ,5000,3000,2000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,3),�r�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Infected human�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 800, 300 ,5000,3000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,3),�b�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Infected human�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 400, 300 ,5000,3000,2000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,3),�y�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Infected human�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 10, 300 ,5000,3000,2000,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,3),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)
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48 ylabel(�Infected human�)

49 hold off

50 legend(�I_H(0)= 2800�,�I_H(0)= 1800�,�I_H(0)= 1200�, �I_H(0)= 800�,�I_H(0)=

400�,�I_H(0)= 10�)

1 clear

2 tspan=[0 50]

3 y0=[1000, 800, 140, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

4 [t,y]=ode45(@chap4,tspan,y0)

5 figure(1)

6 plot(t,y(:,3),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�I_{HB}�)

9 hold on

10 tspan=[0 50]

11 y0=[1000, 800, 110, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

12 [t,y]=ode45(@chap4,tspan,y0)

13 figure(1)

14 plot(t,y(:,3),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�I_{HB}�)

17 hold on

18 tspan=[0 50]

19 y0=[1000, 800, 80, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

20 [t,y]=ode45(@chap4,tspan,y0)

21 figure(1)

22 plot(t,y(:,3),�C�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�I_{HB}�)

25 hold on

26 tspan=[0 50]

27 y0=[1000, 800, 70, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

28 [t,y]=ode45(@chap4,tspan,y0)

29 figure(1)

30 plot(t,y(:,3),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�I_{HB}�)

33 hold on

34 tspan=[0 50]

35 y0=[1000, 800, 40, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

36 [t,y]=ode45(@chap4,tspan,y0)

37 figure(1)

38 plot(t,y(:,3),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)
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40 ylabel(�I_{HB}�)

41 hold on

42 tspan=[0 50]

43 y0=[1000, 800, 10, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

44 [t,y]=ode45(@chap4,tspan,y0)

45 figure(1)

46 plot(t,y(:,3),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�I_{HB}�)

49 hold off

50 legend(�I_{HB}(0)= 2500�,�I_{HB}(0)= 2000�,�I_{HB}(0)= 1500�,�I_{HB}(0)=

1000�, �I_{HB}(0)= 500�,�I_{HB}(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,1200,100,100,2000,1000,5000,1000,800, 500, 5000,0]

4 [t,y]=ode45(@chap4,tspan,y0)

5 figure(1)

6 plot(t,y(:,5),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�I_{HP}�)

9 hold on

10 tspan=[0 100]

11 y0=[1000, 800, 500, 100 ,1000,100,100,2000,1000,5000,1000,800, 500, 5000,0]

12 [t,y]=ode45(@chap4,tspan,y0)

13 figure(1)

14 plot(t,y(:,5),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�I_{HP}�)

17 hold on

18 tspan=[0 100]

19 y0=[2000, 800, 500, 100 ,800,100,100,2000,1000,5000,1000,800, 500, 5000,0]

20 [t,y]=ode45(@chap4,tspan,y0)

21 figure(1)

22 plot(t,y(:,5),�y�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�I_{HP}�)

25 hold on

26 tspan=[0 100]

27 y0=[1500, 800, 500, 100 ,600,100,100,2000,1000,5000,1000,800, 500, 5000,0]

28 [t,y]=ode45(@chap4,tspan,y0)

29 figure(1)

30 plot(t,y(:,5),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)
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32 ylabel(�I_{HP}�)

33 hold on

34 tspan=[0 100]

35 y0=[1000, 800, 500, 100 ,400,100,100,2000,1000,5000,1000,800, 500, 5000,0]

36 [t,y]=ode45(@chap4,tspan,y0)

37 figure(1)

38 plot(t,y(:,5),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�I_{HP}�)

41 hold on

42 tspan=[0 100]

43 y0=[100, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

44 [t,y]=ode45(@chap4,tspan,y0)

45 figure(1)

46 plot(t,y(:,5),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�I_{HP}�)

49 hold off

50 legend(�I_{HP}(0)= 1500�,�I_{HP}(0)= 1000�,�I_{HP}(0)= 800�,�I_{HP}(0)= 600

�, �I_{HP}(0)= 200�,�I_{HP}(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 260 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

4 [t,y]=ode45(@chap4,tspan,y0)

5 figure(1)

6 plot(t,y(:,4),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�I_{HS}�)

9 hold on

10 tspan=[0 100]

11 y0=[1000, 800, 500, 210 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

12 [t,y]=ode45(@chap4,tspan,y0)

13 figure(1)

14 plot(t,y(:,4),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�I_{HS}�)

17 hold on

18 tspan=[0 100]

19 y0=[1000, 800, 500, 160 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

20 [t,y]=ode45(@chap4,tspan,y0)

21 figure(1)

22 plot(t,y(:,4),�y�,�linewidth�,2)

23 xlabel(�Time[years]�)
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24 ylabel(�I_{HS}�)

25 hold on

26 tspan=[0 100]

27 y0=[1000, 800, 500, 110 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

28 [t,y]=ode45(@chap4,tspan,y0)

29 figure(1)

30 plot(t,y(:,4),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�I_{HS}�)

33 hold on

34 tspan=[0 100]

35 y0=[1000, 800, 500, 60 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

36 [t,y]=ode45(@chap4,tspan,y0)

37 figure(1)

38 plot(t,y(:,4),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�I_{HS}�)

41 hold on

42 tspan=[0 100]

43 y0=[1000, 800, 500, 10 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

44 [t,y]=ode45(@chap4,tspan,y0)

45 figure(1)

46 plot(t,y(:,4),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�I_{HS}�)

49 hold off

50 legend(�I_{HS}(0)= 1500�,�I_{HS}(0)= 1000�,�I_{HS}(0)= 800�,�I_{HS}(0)= 600

�, �I_{HS}(0)= 200�,�I_{HS}(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 300 ,5000,3000,5000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,7),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�Infected rodent�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 500, 300 ,5000,3000,4000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,7),�y�,�linewidth�,2)

15 xlabel(�Time[years]�)
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16 ylabel(�Infected rodent�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 500, 300 ,5000,3000,3000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,7),�m�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Infected rodent�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,7),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Infected rodent�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,5000,3000,1000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,7),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Infected rodent�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 500, 300 ,5000,3000,10,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,7),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Infected rodent�)

49 hold off

50 legend(�I_R(0)= 5000�,�I_R(0)= 4000�,�I_R(0)= 3000�, �I_R(0)= 2000�,�I_R(0)

= 1000�,�I_R(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1800, 1500, 500, 2300 ,5000,3000,2000,8000,5000,10000]

4 [t,y]=ode45(@m11,tspan,y0)

5 figure(1)

6 plot(t,y(:,4),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

291



8 ylabel(�Recovered human�)

9 hold on

10 tspan=[0 100]

11 y0=[1800, 1500, 500, 1800 ,5000,3000,2000,8000,5000,10000]

12 [t,y]=ode45(@m11,tspan,y0)

13 figure(1)

14 plot(t,y(:,4),�y�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�Recovered human�)

17 hold on

18 tspan=[0 100]

19 y0=[1800, 1500, 500, 1300 ,5000,3000,2000,8000,5000,10000]

20 [t,y]=ode45(@m11,tspan,y0)

21 figure(1)

22 plot(t,y(:,4),�m�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�Recovered human�)

25 hold on

26 tspan=[0 100]

27 y0=[1800, 1500, 500, 800 ,5000,3000,2000,8000,5000,10000]

28 [t,y]=ode45(@m11,tspan,y0)

29 figure(1)

30 plot(t,y(:,4),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�Recovered human�)

33 hold on

34 tspan=[0 100]

35 y0=[1800, 1500, 500, 300 ,5000,3000,2000,8000,5000,10000]

36 [t,y]=ode45(@m11,tspan,y0)

37 figure(1)

38 plot(t,y(:,4),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�Recovered human�)

41 hold on

42 tspan=[0 100]

43 y0=[1800, 1500, 500, 0 ,5000,3000,2000,8000,5000,10000]

44 [t,y]=ode45(@m11,tspan,y0)

45 figure(1)

46 plot(t,y(:,4),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�Recovered human�)

49 hold off

50 legend(�R_H(0)= 2300�,�R_H(0)= 1800�,�R_H(0)= 1300�,�R_H(0)= 800�, �R_H(0)=

300�,�R_H(0)= 5�)
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1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,50,1500,100,2000,1000,5000,1000,800, 500, 5000,0]

4 [t,y]=ode45(@chap4,tspan,y0)

5 figure(1)

6 plot(t,y(:,5),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�I_{HS}�)

9 hold on

10 tspan=[0 100]

11 y0=[1000, 800, 500, 100 ,50,1000,100,2000,1000,5000,1000,800, 500, 5000,0]

12 [t,y]=ode45(@chap4,tspan,y0)

13 figure(1)

14 plot(t,y(:,5),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�I_{HS}�)

17 hold on

18 tspan=[0 100]

19 y0=[2000, 800, 500, 100 ,50,800,100,2000,1000,5000,1000,800, 500, 5000,0]

20 [t,y]=ode45(@chap4,tspan,y0)

21 figure(1)

22 plot(t,y(:,5),�c�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�I_{HS}�)

25 hold on

26 tspan=[0 100]

27 y0=[1500, 800, 500, 100 ,50,500,100,2000,1000,5000,1000,800, 500, 5000,0]

28 [t,y]=ode45(@chap4,tspan,y0)

29 figure(1)

30 plot(t,y(:,5),�r�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�I_{HS}�)

33 hold on

34 tspan=[0 100]

35 y0=[1000, 800, 500, 100 ,50,300,100,2000,1000,5000,1000,800, 500, 5000,0]

36 [t,y]=ode45(@chap4,tspan,y0)

37 figure(1)

38 plot(t,y(:,5),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�I_{HS}�)

41 hold on

42 tspan=[0 100]

43 y0=[100, 800, 500, 100 ,50,50,100,2000,1000,5000,1000,800, 500, 5000,0]

44 [t,y]=ode45(@chap4,tspan,y0)

45 figure(1)
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46 plot(t,y(:,5),�k�,�linewidth�,2)

47 xlabel(�Time[years]�)

48 ylabel(�I_{HS}�)

49 hold off

50 legend(�R_H(0)= 1500�,�R_H(0)= 1000�,�R_H(0)= 800�,�R_H(0)= 500�, �R_H(0)=

300�,�R_H(0)= 50�)

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,50,100,10000,2000,1000,5000,1000,800, 500, 5000,0]

4 [t,y]=ode45(@chap4,tspan,y0)

5 figure(1)

6 plot(t,y(:,14),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�A�)

9 hold on

10 tspan=[0 100]

11 y0=[1000, 800, 500, 100 ,50,100,8000,2000,1000,5000,1000,800, 500, 5000,0]

12 [t,y]=ode45(@chap4,tspan,y0)

13 figure(1)

14 plot(t,y(:,14),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�A�)

17 hold on

18 tspan=[0 100]

19 y0=[1000, 800, 500, 100 ,50,100,6000,2000,1000,5000,1000,800, 500, 5000,0]

20 [t,y]=ode45(@chap4,tspan,y0)

21 figure(1)

22 plot(t,y(:,14),�r�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�A�)

25 hold on

26 tspan=[0 100]

27 y0=[1000, 800, 500, 100 ,50,100,4000,2000,1000,5000,1000,800, 500, 5000,0]

28 [t,y]=ode45(@chap4,tspan,y0)

29 figure(1)

30 xlabel(�Time[years]�)

31 ylabel(�A�)

32 hold on

33 tspan=[0 100]

34 y0=[1000, 800, 500, 100 ,50,100,2000,2000,1000,5000,1000,800, 500, 5000,0]

35 [t,y]=ode45(@chap4,tspan,y0)

36 figure(1)

37 plot(t,y(:,14),�b�,�linewidth�,2)
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38 xlabel(�Time[years]�)

39 ylabel(�A�)

40 hold on

41 tspan=[0 100]

42 y0=[1000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

43 [t,y]=ode45(@chap4,tspan,y0)

44 figure(1)

45 plot(t,y(:,14),�k�,�linewidth�,2)

46 xlabel(�Time[years]�)

47 ylabel(�A�)

48 hold off

49 legend(�S_F(0)= 10000�,�S_F(0)= 8000�,�S_F(0)= 6000�, �S_F(0)= 4000�,�S_F

(0)= 2000�,�S_F(0)= 100�)

1 clear

2 tspan=[0 50]

3 y0=[3000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

4 [t,y]=ode45(@chap4,tspan,y0)

5 figure(1)

6 plot(t,y(:,14),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�A�)

9 hold on

10 tspan=[0 50]

11 y0=[2500, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

12 [t,y]=ode45(@chap4,tspan,y0)

13 figure(1)

14 plot(t,y(:,14),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�A�)

17 hold on

18 tspan=[0 50]

19 y0=[2000, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

20 [t,y]=ode45(@chap4,tspan,y0)

21 figure(1)

22 plot(t,y(:,14),�c�,�linewidth�,2)

23 xlabel(�Time[years]�)

24 ylabel(�A�)

25 hold on

26 tspan=[0 50]

27 y0=[1500, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

28 [t,y]=ode45(@chap4,tspan,y0)

29 figure(1)

30 plot(t,y(:,14),�r�,�linewidth�,2)
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31 xlabel(�Time[years]�)

32 ylabel(�A�)

33 hold on

34 tspan=[0 50]

35 y0=[800, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

36 [t,y]=ode45(@chap4,tspan,y0)

37 figure(1)

38 plot(t,y(:,14),�b�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�A�)

41 hold on

42 tspan=[0 50]

43 y0=[10, 800, 500, 100 ,50,100,100,2000,1000,5000,1000,800, 500, 5000,0]

44 [t,y]=ode45(@chap4,tspan,y0)

45 figure(1)

46 xlabel(�Time[years]�)

47 ylabel(�A�)

48 hold off

49 legend(�S_H(0)= 3000�,�S_H(0)= 2500�,�S_H(0)= 2000�,�S_H(0)= 1500�, �S_H(0)

= 800�,�S_H(0)= 10�)

1 clear

2 tspan=[0 100]

3 y0=[1000, 800, 500, 100 ,50,100,100,2000,15000,5000,1000,800, 500, 5000,0]

4 [t,y]=ode45(@chap4,tspan,y0)

5 figure(1)

6 plot(t,y(:,14),�g�,�linewidth�,2)

7 xlabel(�Time[years]�)

8 ylabel(�A�)

9 hold on

10 tspan=[0 100]

11 y0=[1000, 800, 500, 100 ,50,100,100,2000,8000,5000,1000,800, 500, 5000,0]

12 [t,y]=ode45(@chap4,tspan,y0)

13 figure(1)

14 plot(t,y(:,14),�m�,�linewidth�,2)

15 xlabel(�Time[years]�)

16 ylabel(�A�)

17 hold on

18 tspan=[0 100]

19 y0=[1000, 800, 500, 100 ,50,100,100,2000,6000,5000,1000,800, 500, 5000,0]

20 [t,y]=ode45(@chap4,tspan,y0)

21 figure(1)

22 plot(t,y(:,14),�r�,�linewidth�,2)

23 xlabel(�Time[years]�)
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24 ylabel(�A�)

25 hold on

26 tspan=[0 100]

27 y0=[1000, 800, 500, 100 ,50,100,100,2000,4000,5000,1000,800, 500, 5000,0]

28 [t,y]=ode45(@chap4,tspan,y0)

29 figure(1)

30 plot(t,y(:,14),�b�,�linewidth�,2)

31 xlabel(�Time[years]�)

32 ylabel(�A�)

33 hold on

34 tspan=[0 100]

35 y0=[1000, 800, 500, 100 ,50,100,100,2000,2000,5000,1000,800, 500, 5000,0]

36 [t,y]=ode45(@chap4,tspan,y0)

37 figure(1)

38 plot(t,y(:,14),�k�,�linewidth�,2)

39 xlabel(�Time[years]�)

40 ylabel(�A�)

41 hold on

42 tspan=[0 100]

43 y0=[1000, 800, 500, 100 ,50,100,100,2000,100,5000,1000,800, 500, 5000,0]

44 [t,y]=ode45(@chap4,tspan,y0)

45 figure(1)

46 plot(t,y(:,14),�c�,�linewidth�,2))

47 xlabel(�Time[years]�)

48 ylabel(�A�)

49 hold off

50 legend(�S_R(0)= 10000�,�S_R(0)= 8000�,�S_R(0)= 6000�, �S_R(0)= 4000�,�S_R

(0)= 2000�,�S_R(0)= 100�)

4.2 Sinusoidal functions for parameters that are affected by weather variation

1 function r1 = Gamma1(t)

2 global Gamma1_0 Gamma1_1

3 r1 = Gamma1_0. * (1+Gamma1_1. * cos(2. * pi. * t));

1 function r2 = Gamma2(t)

2 global Gamma2_0 Gamma2_1

3 r2 = Gamma2_0* (1+Gamma2_1* cos(2 * pi * t));

1 function r3 = Gamma3(t)

2 global Gamma3_0 Gamma3_1
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3 r3 = Gamma3_0* (1+Gamma3_1* cos(2 * pi * t));

1 function r4 = Gamma4(t)

2 global Gamma4_0 Gamma4_1

3 r4 = Gamma4_0* (1+Gamma4_1* cos(2 * pi * t));

1 function r5 = Gamma5(t)

2 global Gamma5_0 Gamma5_1

3 r5 = Gamma5_0* (1+Gamma5_1* cos(2 * pi * t));

1 function r6 = Gamma6(t)

2 global Gamma6_0 Gamma6_1

3 r6 = Gamma6_0* (1+Gamma6_1* cos(2 * pi * t));

1 function r7 = Gamma7(t)

2 global Gamma7_0 Gamma7_1

3 r7 = Gamma7_0* (1+Gamma7_1* cos(2 * pi * t));

1 function r8 = Gamma8(t)

2 global Gamma8_0 Gamma8_1

3 r8 = Gamma8_0* (1+Gamma8_1* cos(2 * pi * t));

1 function r9 = Gamma9(t)

2 global Gamma9_0 Gamma9_1

3 r9 = Gamma9_0* (1+Gamma9_1* cos(2 * pi * t));

1 function r10 = Gamma10(t)

2 global Gamma10_0 Gamma10_1

3 r10 = Gamma10_0* (1+Gamma10_1* cos(2 * pi * t));

1 function r11 = Gamma11(t)

2 global Gamma11_0 Gamma11_1

3 r11 = Gamma11_0* (1+Gamma11_1* cos(2 * pi * t));

1 function r12 = Gamma12(t)
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2 global Gamma12_0 Gamma12_1

3 r12 = Gamma12_0* (1+Gamma12_1* cos(2 * pi * t));

1 function r13 = Gamma13(t)

2 global Gamma13_0 Gamma13_1

3 r13 = Gamma13_0* (1+Gamma13_1* cos(2 * pi * t));

1 function r14 = Gamma14(t)

2 global Gamma14_0 Gamma14_1

3 r14 = Gamma14_0* (1+Gamma14_1* cos(2 * pi * t));

1 function r17 = omega1(t)

2 global omega1_0 omega1_1

3 r17 = omega1_0 * (1+omega1_1 * cos(2 * pi * t));

1 function r18 = omega2(t)

2 global omega2_0 omega2_1

3 r18 = omega2_0 * (1+omega2_1 * cos(2 * pi * t));

1 function r15 = eta1(t)

2 global eta1_0 eta1_1

3 r15 = eta1_0 * (1+eta1_1 * cos(2 * pi * t));

1 function r16 = eta2(t)

2 global eta2_0 eta2_1

3 r16 = eta2_0 * (1+eta2_1 * cos(2 * pi * t));
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