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A B S T R A C T

Banana cultivation plays a pivotal role in Tanzania’s agricultural landscape and food security. Precisely fore-
casting banana crop yield is essential for resource optimization, market stability, and informed policymaking,
particularly in the face of climate change. This study employed time series and ensemble models to forecast
banana crop yield in Tanzania, offering crucial insights into future production trends. We utilized Seasonal
ARIMA with Exogenous Variables (SARIMAX), State Space (SS), and Long Short-Term Memory (LSTM) models,
chosen based on regression analysis and data exploration. Leveraging historical banana yield data (1961–
2020) and relevant climate variables, we formulated an ensemble model using a weighted average approach.
Our findings underscore the potential of time series and ensemble models for accurate banana crop yield
forecasting. Statistical evaluation metrics validate their effectiveness in capturing temporal variations and
delivering reliable predictions. This research advances agricultural forecasting by demonstrating the successful
application of these models in Tanzania. It emphasizes the importance of considering temporal dynamics and
relevant factors for precise predictions. Policymakers, farmers, and stakeholders can leverage this study’s
outcomes to make informed decisions on resource allocation, market planning, and agricultural policies.
Ultimately, our research bolsters sustainable banana production and enhances food security in Tanzania.
1. Introduction

One of the largest herbaceous flowering trees is the banana (Musa
spp.) plant (Ighalo and Adeniyi, 2019; Lal et al., 2017). Although the
unripe fruit, leaves, inflorescence, stem, and rhizome of the banana
plant are also utilized in many ways as vegetables, food, and animal
feeds, the ripe banana is a soft fruit with a lifespan of 5 to 10 days that
is suitable for use and consumption (Jayasinghe et al., 2022; Lai and
Dzombak, 2020). Bananas rank among the top 10 crops in the world
in terms of yield, area cultivated, and calories produced (Varma and
Bebber, 2019). After maize, rice, and wheat, the fourth most important
crop for providing food and money to more than 30% of the world’s
population is the banana crop (Lucas and Jomanga, 2021). Tanzania
produces the second-largest amount of bananas in East Africa, behind
Uganda (Lucas and Jomanga, 2021). Banana cultivation plays a vital
role in Tanzania’s agricultural sector, contributing significantly to both
food security and economic growth (Lucas and Jomanga, 2021; Varma
and Bebber, 2019). The banana has excellent medicinal and traditional
advantages for human health and is useful in all sections of the body.
The fruit of the banana is a great nutritional supplement, while the leaf
is eaten in different parts of India in various ways as a vegetable (Lal
et al., 2017).

∗ Corresponding author.
E-mail address: patricks@nm-aist.ac.tz (S. Patrick).

The biggest worldwide problem of the century is thought to be
climate change (Hoque and Haque, 2016). While there are numerous
benefits of banana processing for science and technology (Lal et al.,
2017). It is surprising to observe that despite their critical importance
for subsistence and trade, bananas receive insufficient consideration
in worldwide evaluations of how climate change can effect nutritional
and food security (Varma and Bebber, 2019). The climate change has a
variety of effects on crop production, the productivity and sustainability
of banana crops are increasingly challenged by the effects of climate
change (Chowhan et al., 2016). The region faces substantial risks to
crop yield and overall agricultural productivity due to the effects of
rising temperatures, changing rainfall patterns, and a higher frequency
of extreme weather events (Hoque and Haque, 2016). Tanzania is one
of the nations in the world now dealing with the severe effects of
climate change (Omambia and Gu, 2010; Shirima and Lubawa, 2017;
Mayaya, 2015). Tanzania’s farm owners face a number of difficulties
similar to other emerging nations throughout the world that hinder the
expansion and development of the agricultural industry (Lokupitiya,
2018). To ensure the resilience and adaptability of banana cultiva-
tion to changing climatic conditions, accurate and reliable forecasting
models are essential (Varma and Bebber, 2019).
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Tanzania has seen limited research on the impacts of climate
hange, especially in the area of transdisciplinary studies (Kahimba
t al., 2015; Abdoussalami et al., 2023). Consequently, it is challeng-
ng to fully gauge the potential impacts on food security and the
roductivity of the banana crop in the region (Lucas and Jomanga,
021). Furthermore, Tanzania, as a country heavily reliant on agri-
ulture, especially the banana sector, faces unique challenges and
ulnerabilities due to its socio-economic conditions and geographical
ocation (Omambia and Gu, 2010; Shirima and Lubawa, 2017; Mayaya,
015). These factors make Tanzania an interesting and pertinent case
tudy to explore the potential impacts of climate change on both
ood security and the productivity of a significant crop like bananas.
s a staple food for millions of Tanzanians and a significant export
ommodity, the success and resilience of the banana crop directly
nfluence the well-being of both rural communities and the national
conomy (Lucas and Jomanga, 2021). Thus, this research addresses a
ritical knowledge gap in the field of banana crop yield forecasting in
anzania, considering the specific challenges posed by climate change.
y identifying the potential impacts of climate variables on banana
rop yield, we can provide valuable insights into the vulnerabilities
nd adaptive capacities of the sector (Wood et al., 2014). Forecasting
anana crop yield is crucial for effective agricultural planning, resource
llocation, and policy-making. By providing valuable insights, this
esearch empowers farmers, policymakers, and stakeholders to make
nformed decisions and adopt suitable strategies in order to counteract
he detrimental consequences of climate change (Varma and Bebber,
019).

In recent years, time series analysis and ensemble modeling have
merged as powerful tools for forecasting agricultural crop yields
Kamir et al., 2020). Time series analysis leverages historical data
o identify patterns, trends, and seasonality in crop yield, enabling
he development of predictive models (Box et al., 2015). Contrarily,
nsemble modeling utilizes the strengths of various forecasting models
o increase accuracy and robustness (Bertsimas and Boussioux, 2023).
his study aimed to utilize time series and ensemble models to forecast
anana crop yield in Tanzania, specifically focusing on the effects of
limate change. By incorporating historical banana crop yield data and
elevant climate variables, we seek to develop forecasting models that
apture the dynamics of banana productivity under changing climatic
onditions (Pham et al., 2019). Conventional forecasting methods often
truggle to capture the intricate interactions between climatic variables
nd crop yield, highlighting the need to employ sophisticated analytical
echniques (Varma and Bebber, 2019; Bertsimas and Boussioux, 2023).
y combining time series analysis and ensemble modeling, we can

ncrease the forecasts’ precision and dependability, resulting in better
ecision-making in the agriculture industry (Kourentzes et al., 2014).
oreover, the combination of time series and ensemble modeling tech-

iques offers promising opportunities for accurate and robust banana
rop yield forecasting under the influence of climate change (Bertsimas
nd Boussioux, 2023).

. Materials and methods

.1. Data description

In our analysis, we transformed the monthly climate variables,
btained from various sources, into yearly data for each year. This
onversion allowed us to work with annual averages and facilitate our
omprehensive assessment of the impact of these variables on banana
rop yield. The Climatic Research Unit (CRU) at the University of
ast Anglia provided the monthly gridded data for precipitation, mini-
um temperature, and maximum temperature for the reanalysis, these
atasets were freely downloaded from the following website: https:
/data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.05. The CRU dataset
ersion 4.05 (CRU TS 4.05) for a period of 1961–2020, these data

◦ ◦
over the land surface at 0.5 × 0.5 resolution. Numerous published

2

Table 1
Dataset variables used in this study.

N Variable Unit of measurement

1. Precipitation mm
2. Minimum temperature ◦C
3. Maximum temperature ◦C
4. Relative humidity %
5. Soil moisture Fraction
6. Banana crop yield (t/ha)

papers have utilized this dataset to examine precipitation variability in
East Africa, comparing it with the GPCC monthly precipitation dataset
provided by the World Climate Research Program-WCRP (Ongoma
et al., 2019). The research findings consistently demonstrated that the
CRU dataset proved to be more effective and reliable in the analysis.
Furthermore, previous researchers successfully used CRU dataset rain-
fall in Tanzania (Mbigi and Xiao, 2021). The soil moisture and relative
humidity data were acquired from the NCEP/NCAR Reanalysis dataset,
which was downloaded from the following website: https://psl.noaa.
gov/data/gridded/reanalysis/. The relative humidity dataset has a pre-
cision of 2.5◦ × 2.5◦ while the soil moisture dataset has a resolution of
0.25◦ × 0.25◦ (Anwar et al., 2019). The FAOSTAT database, which can
be accessed at https://www.fao.org/faostat/en/#data/QCL, provided
the study’s average annual banana crop yield statistics (see Table 1).

2.2. Methodology

This study delves into the intricate relationship between climate
change and Tanzanian banana crop yield. It aims to understand how
shifting climate patterns impact this essential agricultural output. In
order to obtain the addressed objective of this study, the researchers
takes a two-fold approach. The first approach is Correlation Analysis;
the study investigates how key climate variables, including precipita-
tion, soil moisture, temperature extremes, and relative humidity, relate
to banana crop yield. A robust multiple regression model uncovers
valuable insights within this connection, indeed the multiple regression
model used to identify the significance of key climate variables at
hand. However, the study acknowledges that not all pertinent climate
variables were included. However, we believe that these key climate
variables are reasonable factors for this study.

The second approach is Forecasting Models; to predict future
banana yields amid changing climates, the study employs time series
models like SARIMAX, SS, and LSTM. These models capture temporal
nuances and yield trends. The choice of these approaches was based on
the regression analysis, and data exploration results (Jayasinghe et al.,
2022; Hyndman and Athanasopoulos, 2018; Box et al., 2015). There-
after, we formulated the ensemble model using a weighted average
approach. An ensemble model combines historical yield data and rele-
vant climate variables to enhance prediction accuracy. Specifically, the
use of weighted linear combinations of various ensemble members has
gained popularity because of its ease of implementation in real-world
applications (Bertsimas and Boussioux, 2023).

Generally, this paper aims to provide valuable insights into the
climate–yield interaction, considering the second dimension (i.e fore-
casting models) results and discussion. While not overlooking correla-
tion analysis approach (i.e multiple regression model). The schematic
diagram in Fig. 1 indicates the flow of the whole work:

2.2.1. Multiple regression model
In this work, the regression model shows a relationship between

the yield of the banana crop, denoted by the response variable 𝑌 ,
and five explanatory variables: precipitation (𝑋1), soil moisture (𝑋2),
minimum temperature (𝑋3), maximum temperature (𝑋4), and rela-
tive humidity (𝑋5) (Bhausaheb et al., 2023; Anzures et al., 2022).
The population regression equation, in particular, depicts the actual

https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.05
https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.05
https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.05
https://psl.noaa.gov/data/gridded/reanalysis/
https://psl.noaa.gov/data/gridded/reanalysis/
https://psl.noaa.gov/data/gridded/reanalysis/
https://www.fao.org/faostat/en/#data/QCL
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Fig. 1. The schematic diagram, a representation of methodology.
r
b

t
c
t
r

g

𝛽

w
m
v

n

𝐘

w
r
a

e

𝛽

e

𝐘

b
t
e
i
p
P
i

2

i
h

onnection between the explanatory variables and the response vari-
ble (Ngo and La Puente, 2012). However, as the population regression
quation remains unknown, we need to estimate it based on sampled
ata (Sagamiko et al., 2020; Hanson, 2010).

Let us consider a sample of 𝑛 observations, each containing values
or both the response variable 𝑌 and 𝑝 explanatory variables 𝑋𝑖. We
an represent the values for the 𝑖th observation as 𝑌𝑖, 𝑋𝑖1, 𝑋𝑖2, . . . ,
𝑖𝑝 (Sagamiko et al., 2020). Thus, the multiple regression equation for

hese values is given by: 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+ 𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖, where
𝑖 represents the value of the response variable for the 𝑖th observation,
nd (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑝) represents the values of the explanatory vari-
bles for the 𝑖th observation. The coefficients of the regression model
re denoted by 𝛽0, 𝛽1, 𝛽2,… , 𝛽𝑝, and the term 𝜀𝑖 represents the error
erm for the 𝑖th observation (Sagamiko et al., 2020).

If we have more data points (𝑛) than explanatory variables (𝑝),
orming an overdetermined system with linearly dependent equations,
e can represent the 𝑖th observation of variable 𝑋𝑗 as 𝑋𝑖𝑗 , where
= 1, 2,… , 𝑝 and 𝑖 = 1, 2,… , 𝑛. In this case, the population model for

ll observations of the sample can be expressed as the following system
f equations (Sagamiko et al., 2020; Hanson, 2010):

𝑌1 = 𝛽0 + 𝛽1𝑋11 + 𝛽2𝑋12 +⋯ + 𝛽𝑝𝑋1𝑝 + 𝜀1
𝑌2 = 𝛽0 + 𝛽1𝑋21 + 𝛽2𝑋22 +⋯ + 𝛽𝑝𝑋2𝑝 + 𝜀2

⋮

𝑌𝑛 = 𝛽0 + 𝛽1𝑋𝑛1 + 𝛽2𝑋𝑛2 +⋯ + 𝛽𝑝𝑋𝑛𝑝 + 𝜀𝑛

(1)

The system of Eqs. (1) can be represented in matrix notation as
ollows (Sagamiko et al., 2020; Hanson, 2010):

𝑌1
𝑌2
⋮
𝑌𝑛

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 𝑋11 𝑋12 … 𝑋1𝑝
1 𝑋21 𝑋22 … 𝑋2𝑝
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑋𝑛1 𝑋𝑛2 … 𝑋𝑛𝑝

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝛽0
𝛽1
⋮
𝛽𝑝

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

𝜀1
𝜀2
⋮
𝜀𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(2)

The primary goal of regression analysis is to select the explana-
ory variables that have a significant impact on the yield (Rathod
nd Mishra, 2018). In light of the assumption that the response and
xplanatory variables have a linear connection, we can express the
quation mathematically as Sagamiko et al. (2020), Adejuwon and
gundiminegha (2019) and Salvacion (2020):

= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜀 (3)

where 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, and 𝛽5 are the coefficients or parameters associ-

ated with each explanatory variable, and 𝜀 represents the error term or a

3

esidual, capturing the variability in the crop yield that is not explained
y the model.

The most common way to estimate the population regression equa-
ion is to use least squares (Ngo and La Puente, 2012). A technique
alled least squares seeks to reduce the squared disparities between
he response variable’s observed values and those predicted by the
egression model (Hanson, 2010).

The least squares estimator of the population regression equation is
iven by the following equation:

= (𝑋𝑇𝑋)−1𝑋𝑇 𝑌 (4)

here 𝛽 is the estimated coefficients of the regression equation, 𝑋 is the
atrix of explanatory variables, and 𝑌 represents the vector of observed

alues of the response variable.
To prove, we rewrite the multiple regression equation in matrix

otation. Using the matrices defined earlier in Eq. (3), we have:

= 𝐗𝛽 + 𝜀 (5)

here 𝐘 stand for the column vector of response variable values, 𝐗 rep-
esents the design matrix, 𝛽 denotes the column vector of coefficients,
nd 𝜀 is the column vector of error terms.

To estimate the coefficients 𝛽, using the least squares method. The
stimator is given by:

̂ = (𝐗𝑇𝐗)−1𝐗𝑇𝐘 (6)

Substituting the estimated coefficients 𝛽 into the multiple regression
quation, we get:

̂ = 𝐗𝛽 (7)

Here, 𝐘̂ represents the predicted values of the response variable
ased on the estimated coefficients. Therefore, the estimated popula-
ion regression equation using least squares is 𝐘̂ = 𝐗𝛽. To obtain the
quation 𝛽 = (𝐗𝑇𝐗)−1𝐗𝑇𝐘, we substitute the estimated coefficients 𝛽
nto the equation 𝛽 = (𝐗𝑇𝐗)−1𝐗𝑇𝐘. This equation gives the estimated
opulation regression coefficients 𝛽 based on the least squares method.
lease note that the inverse (𝐗𝑇𝐗)−1 exists if the design matrix 𝐗𝑇𝐗 is
nvertible.

.2.2. Seasonal ARIMA (SARIMA) with exogenous variables
ARIMA, one of the most popular and effective time-series models,

s one of the classics (Rathod and Mishra, 2018). The ARIMA model
as gained considerable popularity because of its linear statistical char-

cteristics and the commonly used Box–Jenkins approach for model
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creation created by Box and Jenkins in the 1970 (Box et al., 2015). The
ARIMA model’s standard form is then written as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) where
the letters 𝑝 stand for the auto-regressive term order, 𝑑 for the differ-
encing term order, and 𝑞 for the moving average term order (Arunraj
et al., 2016; Hyndman and Athanasopoulos, 2018). Mathematically, the
𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model can be expressed as Arunraj et al. (2016):

𝑝(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝜀𝑡 (8)

where 𝜙𝑝(𝐵) stand for the autoregressive (AR) operator of order 𝑝,
(1 − 𝐵)𝑑 stand for the differencing operator, where 𝑑 represents the
order of differencing, 𝑋𝑡 stand for the time-series variable at time 𝑡,

hich is the variable being modeled or predicted, 𝜇 is a constant term
n the equation, accounts for any deterministic component or offset in
he time series, 𝜃𝑞(𝐵) stand for (MA) the moving average operator of
rder 𝑞, and 𝜀𝑡 is the error term at time 𝑡, which denotes the random
r unexplained component of the time-series.

The ARIMA model can be expanded as SARIMA(𝑝, 𝑑, 𝑞)(𝑃 ,𝐷,𝑄)𝑠 to
accommodate seasonal variations, where 𝑠 is a term that considers the
length of the seasonal period (Neog et al., 2022; Meeradevi et al., 2022;
Raj et al., 2019). The SARIMA model can be represented as Arunraj
et al. (2016):

𝜙𝑝(𝐵)𝛷𝑃 (𝐵𝑆 )(1 − 𝐵)𝑑 (1 − 𝐵𝑆 )𝐷𝑋𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑆 )𝜀𝑡 (9)

where 𝜙𝑝(𝐵) stand for (AR) the seasonal autoregressive operator of
order 𝑝, 𝜃𝑞(𝐵) stand for (MA) the seasonal moving average operator of
order 𝑞, (1 − 𝐵)𝑑 represents the differencing operator applied 𝑑 times,
(1 − 𝐵𝑆 )𝐷 denotes the seasonal differencing operator applied 𝐷 times,
and 𝑆 stand for the seasonal length (say, 𝑠 = 4 in quarterly data, and
𝑠 = 12 in monthly data).

Given the SARIMAX(𝑝, 𝑑, 𝑞)(𝑃 ,𝐷,𝑄)𝑠 model, where (𝑋) is the vector
of external variables, the multi linear regression techniques are used to
model the external variables (Arunraj et al., 2016). In this study, we
can express a multiple regression model mathematically as:

𝑌𝑡 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 +𝑤𝑡 (10)

where 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, and 𝛽5 are the coefficients or parameters as-
sociated with each explanatory variable, and 𝑤𝑡 represents the error
term or residual, capturing the variability in the crop yield that is not
explained by the model. The error term 𝑤𝑡 can be expressed in the form
of SARIMA model as Arunraj et al. (2016):

𝑤𝑡 =
𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑆 )

𝜙𝑝(𝐵)𝛷𝑃 (𝐵𝑆 )(1 − 𝐵)𝑑 (1 − 𝐵𝑆 )𝐷
𝜀𝑡 (11)

By inserting Eq. (11) into Eq. (10), we derive the subsequent equa-
tion:

𝑌𝑡 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5

+
𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑆 )

𝜙𝑝(𝐵)𝛷𝑃 (𝐵𝑆 )(1 − 𝐵)𝑑 (1 − 𝐵𝑆 )𝐷
𝜀𝑡 (12)

2.2.3. State space (SS) model
The state space approach is a mathematical framework used for

modeling time series data (Aoki, 2013). It models the underlying
process that generates the observed data as a set of unobserved states
that evolve over time according to a set of stochastic equations (Verma,
2018). The observed data is then generated from these unobserved
states through a set of observation equations (Suman and Verma, 2017).

State equation:

𝒙𝑡 = 𝑭 𝑡𝒙𝑡−1 +𝑮𝑡𝒘𝑡 (13)

where 𝒙𝑡 is the 𝑛×1 vector of unobserved states at time 𝑡, 𝑭 𝑡 is the 𝑛×𝑛
tate transition matrix, 𝑮𝑡 is the 𝑛 × 𝑚 matrix of state noise, and 𝒘𝑡 is

the 𝑚 × 1 vector of state noise at time 𝑡.
Observation equation:
𝒚𝑡 = 𝑯 𝑡𝒙𝑡 + 𝒗𝑡 (14) a

4

where 𝒚𝑡 is the 𝑝 × 1 vector of observed data at time 𝑡, 𝑯 𝑡 is the 𝑝 × 𝑛
observation matrix, and 𝒗𝑡 is the 𝑝 × 1 vector of observation noise at
time 𝑡.

The state space model presupposes that the noise in the state and
the noise in the observations are independent, both of which have
known covariance matrices and a normal distribution with a mean of
zero (Verma, 2018):

𝒘𝑡 ∼ 𝑁(𝟎,𝑸𝑡) and 𝒗𝑡 ∼ 𝑁(𝟎,𝑹𝑡) (15)

here 𝑸𝑡 and 𝑹𝑡 are the 𝑚 × 𝑚 and 𝑝 × 𝑝 covariance matrices of the
tate noise and observation noise, respectively.

A variety of time series models, including ARMA models, ARIMA
odels, and state space models with non-linear and non-Gaussian state

ransitions and observation equations, can be created using the state
pace technique (Hu et al., 2019; Verma, 2018; Hooda et al., 2020).
tate Space models can be very useful in modeling time series data
ffected by multiple external factors such as climate change (Cook,
985; Marolla et al., 2021). They can capture the effects of multiple
xternal factors on the time series by modeling the external factors as
dditional states in the model. This is done by including additional
quations that describe the dynamics of the external factors (Marolla
t al., 2021).

The state space model is typically estimated using maximum like-
ihood estimation or Bayesian methods (Newman et al., 2023). Given
state space model with observations 𝑦𝑡 and state vectors 𝑥𝑡. We can

xpress the likelihood function as follows:

(𝜃|𝑦) = 𝑓 (𝑦1|𝜃)𝑓 (𝑥1|𝜃)
𝑇
∏

𝑡=2
𝑓 (𝑦𝑡|𝑥𝑡, 𝜃)𝑓 (𝑥𝑡|𝑥𝑡−1, 𝜃) (16)

here 𝜃 denotes the parameters of the state space model, and 𝑓 (𝑦𝑡|𝑥𝑡, 𝜃)
nd 𝑓 (𝑥𝑡|𝑥𝑡−1, 𝜃) are the conditional densities of the observations and
tate vectors, respectively.

The MLE method involves finding the set of parameters 𝜃̂ that
aximizes the likelihood function:

̂ = argmax𝜃𝐿(𝜃|𝑦) (17)

Also, we can express the posterior distribution of the parameters as
ollows:

(𝜃|𝑦) ∝ 𝐿(𝜃|𝑦)𝑝(𝜃) (18)

here 𝐿(𝜃|𝑦) is the likelihood function as defined above, and 𝑝(𝜃)
epresents the prior distribution of the parameters.

The Kalman filter algorithm, which is a recursive Bayesian esti-
ation method is used in parameter estimation (de Bézenac et al.,
020). The Kalman filter combines prior knowledge about the system
ynamics with the observed data to estimate the parameters. It opti-
ally incorporates the available information and updates the parameter

stimates as new data becomes available (de Bézenac et al., 2020;
uman and Verma, 2017).

Hence, the forecasts are generated by projecting the latent state
ariables into the future and using the observation equation to obtain
he predicted values, say banana crop yield:

𝑦̂𝑇 + 1|𝑇 = E[𝑦𝑇 + 1|𝑦1∶𝑇 , 𝜃] = E[𝑓 (𝑠𝑇+1)|𝑠̂𝑇+1|𝑇 , 𝜃] (19)

here 𝑠̂𝑇 + 1|𝑇 is the predicted state estimate for time 𝑇 + 1 given the
bserved data 𝑦1 ∶ 𝑇 , and 𝑓 (𝑠𝑇+1) is the observation equation relating
he latent state variables to the observed yield.

.2.4. Long short-term memory (LSTM) model
Long Short-Term Memory (LSTM), often known as a type of recur-

ent neural networks (RNNs), is a specialized architecture created to
anage sequential data, particularly time series data (Tian et al., 2021;
eeradevi et al., 2022). Traditional RNNs struggle with the vanishing

radient problem, which is especially addressed by LSTMs. LSTMs are

ble to better describe long-term dependencies in sequential data by
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efficiently storing and retrieving information over extended periods of
time (Reddy et al., 2022). The LSTM model essentially offers a practical
method for working with sequential data and has found use in a variety
of fields, including climate forecasting (Bhimavarapu et al., 2023; Tian
et al., 2021; Meeradevi et al., 2022).

An LSTM’s architecture consists of a memory cell that can retain
information for extended periods, along with three gates (input, output,
and forget) (Tian et al., 2021). The input gate controls how much fresh
information is introduced to the memory cell, the output gate controls
how much information is taken out of the memory cell, and the forget
gate controls how much old or unnecessary information is removed
from the memory cell. Within the LSTM paradigm, these gates regulate
the flow of data into and out of the memory cell, enabling efficient
information retention and usage (Liu et al., 2023; Bhimavarapu et al.,
2023).

LSTM model configuration includes the following equations:

𝐈𝐧𝐩𝐮𝐭 𝐥𝐚𝐲𝐞𝐫 ∶ 𝑦𝑡 = 𝑔(𝑊𝑖 ∗ 𝑥𝑡 + 𝑏𝑖) (20)

𝐋𝐒𝐓𝐌 𝐥𝐚𝐲𝐞𝐫 ∶ ℎ𝑡 = 𝐿𝑆𝑇𝑀(ℎ𝑡−1, 𝑦𝑡−1) (21)

𝐎𝐮𝐭𝐩𝐮𝐭 𝐥𝐚𝐲𝐞𝐫 ∶ 𝑦𝑡+1 = 𝑔(𝑊𝑜 ∗ ℎ𝑡 + 𝑏𝑜) (22)

In the input layer, the output 𝑦𝑡 is obtained by applying an activa-
tion function 𝑔 to the dot product of the weight matrix 𝑊𝑖 and the input
ector 𝑥𝑡, followed by the addition of a bias term 𝑏𝑖. This 𝑦𝑡 represents

the output of the input layer at time 𝑡.
The LSTM layer’s output ℎ𝑡 at time 𝑡 is determined by passing the

previous hidden state ℎ𝑡−1 and the previous input 𝑦𝑡−1 to the LSTM
cell. The LSTM cell updates its internal state based on these inputs,
generating a new hidden state ℎ𝑡.

For the next time step, the predicted output 𝑦𝑡+1 is calculated by
pplying the activation function 𝑔 to the dot product of the weight
atrix 𝑊𝑜 and the hidden state ℎ𝑡, then adding a bias term 𝑏𝑜.

The backpropagation through time (BPTT) method is used to update
he LSTM neuron weights before training the model with the training
ata. This involves computing the gradients of the loss function with
espect to the weights using the chain rule (Sadowski, 2016). The
STM model learns to improve its performance on the training data by
teratively modifying the weights based on the estimated gradients, in-
reasing its capacity for precise prediction (Bhimavarapu et al., 2023).

𝜕𝐿
𝜕𝑊

= 𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕ℎ

⋅
𝜕ℎ
𝜕𝑊

(23)

In the equation, 𝐿 represents the loss function, 𝑊 denotes the
weight, 𝑦 is the output, ℎ corresponds to the hidden state, and 𝑡
indicates the time step. These variables play essential roles in the
process of training the LSTM model and optimizing its performance on
the training data.

Furthermore, the first and second moments of the gradient are
taken into account using an appropriate optimization technique, such
as Adam. This allows the algorithm to adapt the learning rate inde-
pendently for each weight, enhancing the training process of the LSTM
model (Bhimavarapu et al., 2023).

𝑚𝑡 = 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅
𝜕𝐿
𝜕𝑊

(24)

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅
( 𝜕𝐿
𝜕𝑊

)2
(25)

𝑊 = 𝑊 − 𝛼 ⋅
𝑚𝑡

√

𝑣𝑡 + 𝜖
(26)

where 𝑚𝑡 and 𝑣𝑡 are the first and second moment estimates of the
radient, respectively, and 𝑊 is the weight being updated, 𝛼 is the
earning rate, 𝛽1 and 𝛽2 represents hyperparameters that control the
ecay rates of the moment estimates, and 𝜖 stand for a small constant
o prevent division by zero.
 f

5

Finally, the LSTM model is optimized and if its performance met
he desired level of accuracy, it deployed for use in predictions (Bhi-
avarapu et al., 2023), for example predicting banana crop yield under
ifferent climate scenarios.

.2.5. Ensemble modeling approach
By mixing the results of various models, ensemble modeling is a

lexible strategy that aims to increase prediction accuracy and reliabil-
ty (Bertsimas and Boussioux, 2023). Although ensemble models can
e used with a variety of data sources, including time series data, their
ain goal is to improve overall model performance rather than focusing

specially on the special properties of time series data (Hao et al.,
020).

Ensemble modeling can be effectively integrated with time series
odeling to enhance the accuracy of time series forecasts (Bertsimas

nd Boussioux, 2023). As an illustration, a common approach in ensem-
le modeling involves constructing a diverse ensemble of time series
odels, which may include ARIMA, exponential smoothing, and neural
etwork models. Subsequently, the predictions from these individual
odels are combined using techniques like weighted averaging or other
ethods (Kourentzes et al., 2014; Bayati et al., 2020; Kamir et al.,
020). This allows for the utilization of the unique strengths of each
ndividual model while compensating for their respective weaknesses,
eading to more precise and reliable overall forecasts (Moore and
obell, 2014).

For instance, the ensemble model involves aggregating the predic-
ions of individual models to derive a final prediction using a weighted
verage approach. The mathematical representation of the weighted
verage approach can be expressed as follows:

= 𝑤1 × 𝑦1 +𝑤2 × 𝑦2 +𝑤3 × 𝑦3 +⋯ +𝑤𝑛 × 𝑦𝑛 (27)

here 𝑦 is the final predicted value, 𝑦1, 𝑦2, . . . , 𝑦𝑛 are the predicted val-
es of the individual models, respectively, and 𝑤1, 𝑤2, . . . , 𝑤𝑛 are the
eights assigned to the individual models based on their performance
n the training, or validation set.

Furthermore, the weights of the individual models are determined
ased on their performance on the testing set. Based on the inverse of
ach model’s error or loss, the weights are assigned. To ensure that the
eights add up to 1, they are normalized, and the normalized weights
re then used in the ensemble model to combine the predictions of the
ndividual models (Van Leeuwen et al., 2023). For instance, in this
aper, the weights assigned to each model were derived from their
-squared values, which indicate the proportion of variance in the
bserved banana crop yield that is explained by each model.

The process of converting R-squared values to normalized weights
nvolved the following steps. Determining weights, the ratio of 1 to
ach R-squared value is used. Normalization, we divide each weight
y the sum of all weights obtained across the models used to ensure
hat the weights are comparable and would sum up to 1. Assigning
eights, the normalized R-squared values are then used as weights to
etermine the contribution of each model to the final forecast. Final
orecast, the ensemble forecast is generated by taking the weighted
verage of the predictions from the individual models. This approach
llow us to leverage the strengths of each model and mitigate potential
eaknesses.

. Results and discussion

.1. Data exploration results

The analysis relies on the yearly reanalysis datasets of precipi-
ation, soil moisture, minimum temperature, maximum temperature,
nd relative humidity. These datasets were utilized for modeling and
orecasting the banana crop yield. All necessary steps required for data



S. Patrick, S. Mirau, I. Mbalawata et al. Resources, Environment and Sustainability 14 (2023) 100138
Table 2
Statistical evaluation metrics.

Model Training set Validation set

MSE MAE RMSE R-Squared MSE MAE RMSE R-Squared

SARIMAX 0.3828 0.3650 0.6187 0.8109 4.3797 1.4789 2.0928 0.1825
State space 0.0105 0.0423 0.1026 0.9948 0.0885 0.2068 0.2974 0.9835
LSTM 0.6200 0.4192 0.7874 0.6991 0.5288 0.6890 0.7272 0.9013
pre-processing, and filtering were considered, including detrending
(non-stationarity, and seasonality), and autocorrelation. In this study,
the collected climate variables were believed to impact banana crop
yield under a robust multiple regression analysis.

The MATLAB, and PYTHON tools were used interchangeably
throughout the analysis. The all selected methods performed by using
climate time-series data to predict the production of banana yield in
Tanzania for a period of time from 1961 to 2020. The first 80% of the
datasets were used to train the models, while the final 20% were used to
test and assess how well they worked. The normalize function was used
to normalize the training and testing sets as necessary to make sure that
all variables are on a similar scale. This normalization process helps in
avoiding potential issues caused by differing magnitudes among the
variables. The training and testing data were transformed into cell
arrays to facilitate their processing and handling within the models.
Converting the data to cell arrays allows for more flexible and efficient
data manipulation during the model building and evaluation processes.
Various statistical metrics were found in each model as shown in
Table 2, which signify the performance for the selection of the best
model that fit the data. This table showcases the performance metrics
and evaluation results obtained from the models.

3.2. Regression analysis and results

Our research supports the assumption that there is a linear re-
lationship between the explanatory variables and the response. The
regression coefficients shown in Table 3 show how key climate vari-
ables affect the rate of change in banana crop production when each
explanatory variable changes by one unit while all other explanatory
variables remain constant. By plugging the values of the regression
coefficients from Table 3 into the regression equation, we may obtain
the following expression:

𝑌 = −22.8320 + 0.0206𝑋1 − 0.0085𝑋2 + 4.8328𝑋3 − 1.6594𝑋4 − 0.0991𝑋5

(28)

The constant term (−22.8320) is the predicted value of 𝑌 when
none of the independent variables have an effect, and the negative
sign indicates the gradual decrease in banana crop yield. Based on the
p-values as presented in Table 3, only minimum temperature has a
significant positive impact on the yield, while the other external vari-
ables (precipitation, soil moisture, maximum temperature, and relative
humidity), and the intercept does not significantly impact the banana
crop yield. However, we applied the stepwise regression technique, and
all the explanatory variables were selected to be significant.

In general, the regression model’s R-squared value of 0.502 shows
that the chosen explanatory variables can account for about 50.2%
of the variation in banana crop yield. The F-statistic of 10.87 is sta-
tistically significant (Prob (F-statistic): 2.89e−07), indicating that the
model as a whole is significant. On the other hand, the condition
number is large, 4.43e−04. This observation may suggest the presence
of significant multicollinearity or other numerical issues in the model.
To overcome the multicollinearity doubt, Variance Inflation Factor
(𝑉 𝐼𝐹 < 10) test was done and the values are indicated in Table 3,
showing that multicollinearity was not an issue among the external

variables used in the analysis.

6

3.3. Results of SARIMAX model

The Banana crop yield SARIMAX model was configured. Based
on the data exploration results, the suggested SARIMAX models were
SARIMAX(0, 1, 1)(0, 1, 1)12, SARIMAX(0, 1, 1)(0, 1, 0)12, SARIMAX(0, 1, 2)
(0, 1, 1)12, and SARIMAX(0, 1, 2)(0, 1, 0)12. The model complied with
the Box–Jenkins technique, including model fitting, which comprised
model identification, here (SARIMAX(0, 1, 2)(0, 1, 0)12) model was se-
lected, parameter estimation, estimates are indicated in Table 4, and
diagnostic checking.

In the training set, the predicted crop yields for the first 40 years
closely align with the observed crop yields, as depicted in Fig. 2(a).
This observation indicates that the model is successfully identifying
the underlying patterns in the data. In the validation set, the predicted
crop yields closely match the observed crop yields for the first 4 years,
indicating that the model is performing well on unseen data. This
alignment between predictions and actual values suggests that the
model’s generalization capability is satisfactory for new data points.
However, Fig. 2(b) reveals a notable discrepancy between the observed
and predicted crop yields from 4 to 8 years. Nevertheless, the model
does well between 8 and 10 years, indicating that it could be able
to successfully capture the underlying patterns in the validation data
throughout that time.

Finally, the model forecasting future yields for the next 10 time
steps. The last values, which are 9.8245 and 10.5738 from the val-
idation set used as the initial inputs for scenario 1 and scenario 2
respectively, and then the model iteratively predicts the next value
based on the previous prediction. The forecasted yields for Scenario
1 are as follows:

6.3705, 5.9595, 6.6489, 5.9003, 6.2839, 9.5054, 8.8109, 11.7376,
10.3568, 10.5829. These values represent the forecasted crop yields
for Scenario 1 over a forecast horizon of 10 time steps. The forecasted
yields for Scenario 1 suggest a pattern of fluctuating values. The yields
start at 6.37, decrease to 5.96, increase to 6.65, then fall again to 5.90.
The subsequent yields show further variation, reaching a peak of 11.74
and then stabilizing around 10.36 and 10.58. The forecasted yields for
Scenario 2 are as follows:

10.5738, 6.3705, 6.3542, 6.519, 6.3192, 6.4653, 6.5113, 6.6108,
6.6679, 6.6528. In Scenario 2, the forecasted yields exhibit a different
pattern. The final observed value from the validation set, which equals
10.5738, was used as the model’s initial value. However, the subse-
quent forecasted yields diverge from this initial value and gradually
decrease. The yields range from 6.32 to 6.67, showing a consistent
downward trend. Generally, the model predicts slightly lower crop
yields in both Scenario 1 and Scenario 2. For a comprehensive analysis
of the model’s performance, Fig. 3 below are the plots providing visual
representations of the predicted and forecasted yields:

3.4. Results of state space (SS) model

It was done to use the State Space concept. Following that, the
State Space model’s state vector, state transition matrix, observation
matrix, process noise covariance matrix, and measurement noise co-
variance matrix were defined. These elements are crucial for defining
the dynamics and uncertainty properties of the model. The identity
matrix was used to construct the state covariance matrix, and arrays

were initialized to hold the outcomes. The results of the Kalman filter
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Table 3
OLS regression results.

Model R-squared Adj. R-squared F-statistic Prob (F-statistic)

OLS 0.502 0.455 10.87 2.89e−07

Variable Coef. Std. Err. t-stat P-value [0.025, 0.975] VIF

Constant −22.8320 30.506 −0.748 0.457 [−83.993, 38.329] –
𝑋1 0.0206 0.043 0.478 0.634 [−0.066, 0.107] 2.9606
𝑋2 −0.0085 0.007 −1.147 0.257 [−0.023, 0.006] 1.9909
𝑋3 4.8328 1.628 2.968 0.004 [1.569, 8.097] 6.7376
𝑋4 −1.6594 1.648 −1.007 0.318 [−4.963, 1.644] 7.6477
𝑋5 −0.0991 0.069 −1.439 0.156 [−0.237, 0.039] 1.1402

More model information

Method: Least squares AIC: 245.4
No. observations: 60 BIC: 257.9
Df residuals: 54 Kurtosis: 5.039
Df model: 5 Skewness: 1.000
Covariance type: nonrobust Jarque–Bera (JB): 20.380
Durbin–Watson: 1.192 Prob(JB): 3.75e−05
Cond. No.: 4.43e+04 Omnibus: 15.590
Log-Likelihood: −116.68 Prob(Omnibus): 0.000
Fig. 2. The observed and predicted banana crop yield for the SARIMAX model.
Fig. 3. The plot of banana crop yield forecasting for the SARIMAX model.
algorithm-based parameter estimate for the state space model are also
shown in Table 2.

Generally speaking, the SS model shows a strong match to the
training set of data, with low prediction errors (MSE and MAE), a small
standard deviation of errors (RMSE), and a high proportion of explained
variability (R-squared). However, the model’s performance is slightly
reduced when applied to the validation set, with slightly higher pre-
diction errors and a slightly lower coefficient of determination. Fig. 4,
are training and validation plots, plotted to compare the observed
7

and predicted crops yield for validating the model performance. The
trend of the observed yields is determined by the model, there are
some deviations between the observed and predicted yields. The red
dashed line shows some discrepancies and variations from the blue
line, indicating that the model’s predictions are not as accurate for the
validation set as they were for the training set. The plots demonstrate
that the state space model performs well in predicting the crop yields,
particularly for the training set. The model shows a strong ability to
capture the trends and fluctuations in the observed yields.
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Fig. 4. The observed and predicted banana crop yield for the SS model.
Table 4
Estimated parameters for SARIMAX(0, 1, 2)(0, 1, 0)12 model.
𝑅2(𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡) 𝑅2(𝑇 𝑒𝑠𝑡𝑖𝑛𝑔𝑆𝑒𝑡) AIC BIC

0.8109 0.1825 91.469 103.911

Variable Coef. Std. Err. t-stat P-value [0.025, 0.975]

𝑋1 0.0166 0.032 0.510 0.610 [−0.047, 0.080]
𝑋2 −0.0016 0.006 −0.243 0.808 [−0.014, 0.011]
𝑋3 −0.1055 1.421 −0.074 0.941 [−2.891, 2.680]
𝑋4 0.0635 1.253 0.051 0.960 [−2.392, 2.519]
𝑋5 0.0110 0.068 0.162 0.872 [−0.122, 0.144]
ma.L1 −0.3858 0.177 −2.181 0.029 [−0.733, −0.039]
ma.L2 0.5397 0.184 2.939 0.003 [0.180, 0.900]
sigma2 0.4894 0.188 2.604 0.009 [0.121, 0.858]

At the end, the SS model performs forecasts for the next 10 time
teps using the final states, which are 10.8487, and 10.5738 from the
redicted yield for scenario 1 and true yield values for scenario 2 as
he initial states respectively. The forecasted yields for Scenario 1 are
s follows:

7.8510, −0.0261, −15.7032, −42.9991, −86.7473, −152.9127,
−248.7089, −382.7142, −564.9889, −807.1921. Based on the SS model
and using the final expected yield as input, these forecasted yields
represent the crop yields predicted for the following 10 time steps. The
forecasted yields show a decreasing trend, with the magnitudes becom-
ing more negative as time progresses. The negative values suggest a
decrease in crop yields over time, indicating potentially unfavorable
conditions or factors affecting crop growth. The forecasted yields for
Scenario 2 are as follows:

5.9203, 5.5512, 5.9086, 5.7096, 5.7043, 6.3168, 7.9205, 7.7233,
5.7479, 12.0627. Based on the state space model and the final true yield
as input, these forecasted yields show the crop yields that are expected
throughout the course of the next 10 time steps. The forecasted yields
show some fluctuations but do not exhibit a clear trend. The values
vary within a relatively narrow range, suggesting relatively stable or
consistent crop yields over time. Below (Fig. 5) are the plots providing
visual representations of the predicted and forecasted yields, allowing
for a comprehensive analysis of the model’s performance.

3.5. Results of LSTM model

The LSTM model also was configured. The sequences and labels
necessary for the LSTM model were generated, followed by constructing
and training the model. Subsequently, predictions were made, and the
scaled predictions were reverted back to their original form using the

inverse transform. The R-squared value for the training data indicates

8

Fig. 5. The plot of banana crop yield forecasting for the State Space model.

that the LSTM model exhibits good performance on the provided
dataset. The MSE, MAE, RMSE, and R-squared values for each model
employed in this study are shown in Table 2. These metrics provide
insights into the performance and accuracy of each model. Overall,
the evaluation results indicate that the LSTM network in this analysis
provide a good fit to the data, as evidenced by low errors (MSE, MAE,
RMSE) and high coefficient of determination (R-squared).

The trained LSTM network was used to predict crop yields for
both the training and validation sets. The predicted yields were com-
pared with the actual yields to evaluate the model’s fit. The model fit
evaluation metrics provided insights into how well the LSTM network
performs in predicting crop yields. Hence, the observed and predicted
crop yields were plotted for both the training and validation sets to
visually compare their trends and performance, as shown in Fig. 6.

In the training data, the predicted crop yields for the first 40 years
closely align with the observed crop yields, as depicted in Fig. 6(a).
This observation indicates that the model is successfully identifying the
underlying patterns in the data. The considerable difference between
the observed and anticipated crop yields after 40 s, on the other
hand, suggests that the correlations in the training set may not be
accurately captured by the model. However, Fig. 6(b) demonstrates
that the predicted crop yields closely align with the observed crop

yields for the initial 10 years, indicating that the model performs well
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Fig. 6. The observed and predicted banana crop yield for the LSTM model.
on unseen data. This alignment between predictions and actual values
suggests that the model has a satisfactory generalization capability for
new data points. The actual and predicted crop yields, however, show a
significant difference after 10 years, suggesting that the model may be
having trouble capturing the underlying trends in the validation data.
This disparity suggests that the model’s predictive accuracy diminishes
for the later time periods of the validation set.

Finally, the model forecasting future yields for the next 10 time
steps. The last predicted and true values, which are −0.3610 and
10.5738 from the validation set used as the initial inputs for scenario
1 and scenario 2 respectively, and then the model iteratively predicts
the next value based on the previous prediction. The forecasted yields
for Scenario 1 are as follows:

−0.2636, −0.0950, −0.3842, −0.1814, −0.2485, −0.2660, −0.2304,
−0.2616, −0.2469, −0.2483. These values represent the forecasted
crop yields for Scenario 1 over a forecast horizon of 10 time steps.
Since these values are normalized yields, they indicate the predicted
yields relative to the range of yields observed in the validation data.
The negative values represent the predicted yields being lower than
the average yield in the validation dataset. In Scenario 1, the model
predicts relatively low crop yields for the forecasted time steps. The
forecasted yields for Scenario 2 are as follows:

−1.2502, −0.3620, −0.4858, −0.6064, −0.5217, −0.3284, −0.2751,
−0.2657, −0.2618, −0.2626. These values represent the forecasted crop
yields for Scenario 2 over a forecast horizon of 10 time steps. The values
range from −1.2502 to −0.2618. Similar to Scenario 1, these values
represent normalized yields and indicate the predicted yields relative
to the validation data. In Scenario 2, the model predicts even lower crop
yields compared to Scenario 1. Generally, the model predicts lower crop
yields in both Scenario 1 and Scenario 2. Below are the plots (Fig. 7)
providing visual representations of the predicted and forecasted yields:

3.6. Results of ensemble model

As we discussed before, once we have trained and evaluated the
SARIMAX, State Space, and LSTM models on the datasets, we can
proceed with determining the weights, and obtaining final predicted
values steps to formulate ensemble model for forecasting banana crop
yield. We determined the weights of the individual models based on
their performance on the validation set. We determined the weights
depending on how well each model fit the data. The R-squared (Co-
efficient of Determination) represents a valuable metric for evaluating
the overall goodness of fit and the extent to which the model captures
the variability in the data. The R-squared values of the SARIMAX, State
Space, and LSTM models are 0.1825, 0.9835, and 0.9013 respectively,
as indicated in Table 2.
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Fig. 7. The plot of banana crop yield forecasting for the LSTM model.

In computing the final predicted value, the ensemble model repre-
sented as:

𝑦 = 0.7204×9.8245+0.1337×10.8487+0.1459×−0.3610 → 𝑦 = 8.4754. (29)

The normalized weights of the SARIMAX, State Space, and LSTM
models are 0.7204, 0.1337, and 0.1459 respectively. The final pre-
dicted values from the SARIMAX, State Space, and SLTM models are
9.8245, 10.8487, and −0.3610 respectively. The ensemble model’s
final predicted value of 8.4754 is the result of combining the outputs
from the individual SARIMAX, State Space, and LSTM models. The
individual models predict different values, with State Space predicting
the highest value of 10.8487, followed by SARIMAX with 9.8245, and
LSTM with −0.3610. The ensemble model combines the predictions
of these individual models using weights that are optimized during
validation to give the final predicted value. Therefore, the ensemble
model can be seen as a more robust and accurate model as it takes
into account the strengths and weaknesses of the individual models to
provide a more accurate prediction (Bertsimas and Boussioux, 2023).

The last phase involved evaluating the ensemble model’s perfor-
mance using relevant metrics, as presented in Table 5. This entailed
comparing the ensemble model’s performance with that of the individ-
ual models to gauge its effectiveness. Thus, the R-squared of SARIMAX,
State Space, LSTM, and Ensemble models are 0.1825, 0.9835, 0.9013,
and 0.9999999999891197 respectively. The R-squared values provide
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Table 5
Evaluation metrics for the ensemble model.

Metric Value

Mean Squared Error (MSE) 8.35788099957876e−10
Mean Absolute Error (MAE) 2.8029999999290567e−05
Root Mean Squared Error (RMSE) 5.2945999999290567e−05
R-squared 0.9999999999891197

a measure of how well each of the models has performed on the
validation data. A higher R-squared value indicates that the model is
better at predicting the actual values.

In this instance, the ensemble model achieved the highest R-squared
value compared to all other models, suggesting that it outperformed
the other models on the validation data. The SARIMAX model has the
lowest R-squared value, indicating that it is the worst performer among
all the models. The LSTM and State Space models have slightly similar
R-squared values, with the State Space model performing slightly better
than the LSTM model.

4. Conclusion

This study focuses on the configuration and forecasting of banana
crop yield in Tanzania, considering the impact of climate change. In
particular, this study delves into the intricate relationship between
climate change and Tanzanian banana crop yield. It aims to understand
how changing climatic conditions might impact agricultural outcomes,
especially in the context of a country like Tanzania. In pursuit of
the addressed objective of this study, the researchers takes a two-
fold approach, including correlation analysis and forecasting models.
A robust multiple regression model uncovers valuable insights within
this connection. Time series analysis and ensemble modeling techniques
are employed to develop accurate forecasting models that incorporate
climate variables and capture the dynamics of banana production in
Tanzania. The findings emphasize the significance of accounting for
climate change in banana crop yield forecasting. By examining the cor-
relations between climatic variables and banana crop yield, the models
provide vital insight into the potential impacts of climate change on
banana production.

In light of these key climate variables at hand, this study re-
vealed that Tanzania’s banana crop yield has been impacted by climate
change, offering insights into potential vulnerabilities. The insights
gleaned from this study offer a critical foundation for actionable policy
recommendations and strategies to safeguard and enhance banana
production in Tanzania amidst the challenges posed by climate change.
It is imperative that policymakers, researchers, and farmers collaborate
to implement the following measures: climate-resilient practices, data-
driven decision-making, infrastructure investment, policy flexibility,
knowledge dissemination, and continued research. By implementing
these recommendations, Tanzania can fortify its banana production
sector against the disruptive effects of climate change. Together, stake-
holders can work towards sustainable banana production, ensuring
food security and prosperity for the nation’s agricultural communities.

Utilizing time series analysis techniques like SARIMAX, State Space,
and LSTM helps identify relevant patterns and trends in historical
datasets, forming the foundation for robust forecasting models. The
ensemble modeling approach further enhances the accuracy and reli-
ability of predictions by combining multiple individual models, while
the integration of climate variables improves the precision of forecasts.
Understanding the specific climatic factors influencing banana crop
yield can inform decisions related to agricultural practices, resource
allocation, and policy planning.

Future research can build upon these findings by incorporating ad-
ditional variables and employing machine learning techniques for even
more accurate predictions. The prospective effects of climate change

on Tanzania’s banana crop yield can also be assessed with the help
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of impact assessment and climate modeling approaches. Eventually, it
is possible to successfully raise knowledge about the hazards posed
by climate change to the region’s banana crop output by planning
workshops and outreach activities for farmers and stakeholders.
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