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Tis study focuses on modeling and predicting extreme rainfall based on data from the Southern Highlands region, the critical for
rain-fed agriculture in Tanzania. Analyzing 31 years of annual maximum rainfall data spanning from 1990 to 2020, the Gen-
eralized Extreme Value (GEV) model proved to be the best for modeling extreme rainfall in all stations. Tree estimation
methods–L-moments, maximum likelihood estimation (MLE), and Bayesian Markov chain Monte Carlo (MCMC)–were
employed to estimate GEV parameters and future return levels. Te Bayesian MCMC approach demonstrated superior per-
formance by incorporating noninformative priors to ensure that the prior information had minimal infuence on the analysis,
allowing the observed data to play a dominant role in shaping the posterior distribution. Furthermore, return levels for various
future periods were estimated, providing guidance for food protectionmeasures and infrastructure design. Trend analysis using p

value, Kendall’s tau, and Sen’s slope indicated no statistically signifcant trends in rainfall patterns, although a weak positive trend
in extreme rainfall events was observed, suggesting a gradual and modest increase over time. Overall, the study contributes
valuable insights into extreme rainfall patterns and underscores the importance of L-moments in identifying the best ft dis-
tribution and Bayesian MCMC methodology for accurate parameter estimation and prediction, enabling efective measures and
infrastructure planning in the region.

1. Introduction

Extreme rainfall events are no longer a distant possibility but
a harsh reality that we must face [1–4]. Tese natural
phenomena are becoming more frequent, more intense, and
more devastating, afecting millions of people and ecosys-
tems worldwide [3, 5]. Recent scientifc evidence [1, 3–8]
claims global warming to be the root cause of these extreme
weather events. With rising temperatures and increasing
levels of atmospheric carbon dioxide, the hydrological cycle
is thrown of balance, leading to more frequent and severe
foods and droughts across the globe [1, 4, 5, 9]. As per the
fndings of the Intergovernmental Panel on Climate Change
(IPCC) Report [10], rural, underprivileged communities

within developing nations face the highest vulnerability to
the impacts of climate change. Te repercussions of climate
change involve heightened variability in extreme rainfall
patterns, leading to fuctuations in river fows and an in-
creased occurrence of droughts and foods [11–14].

Like many other countries, Tanzania is vulnerable to
these changes [15]. For example, according to the Tanzania
Climate Status Statement of 2022 [16], on February 26, 2022,
extreme rainfall and thunderstorms led to casualties and
displacement in Sumbawanga, Nkasi, and Kalambo districts,
Rukwa region. Additionally, in Ludewa district (Njombe
region), extreme rainfall between February 22 and 23, 2022,
caused the destruction of four bridges, disrupting road
transport temporarily. Likewise, between April 26 and 28,
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2022, extreme rainfall caused severe fooding in the Mbeya
and Songwe regions of Southern Highlands Tanzania [16].
Te fooding resulted in 5 fatalities, 21 injuries, 5 missing
people, and the displacement of 3150 individuals. Numerous
buildings, including houses, schools, and religious struc-
tures, were brutally damaged. Additionally, agricultural
felds spanning 24,700 acres of farm felds, including paddy,
maize, and banana farms were destroyed, and a signifcant
number of livestock perished [16]. Te fooding also led to
the destruction of bridges and roads, impacting trans-
portation in various areas [16]. Generally, extreme rainfall
events have already taken a severe toll on the country’s
agricultural sector, causing signifcant losses in maize and
rice production in the Southern Highlands [15, 17–19].
Tanzania and other countries that rely heavily on agriculture,
the impact of extreme rainfall is already posing great
challenges for their economies. Terefore, it is crucial for
climatologists, meteorologists, economic planners, and
other policymakers to have a better understanding of heavy
rainfall patterns and their future behaviors for efcient and
efective planning, decision-making, and mitigation
purposes [17].

Extreme rainfall is characterized as the highest amount
of rainfall experienced within a 24-hour period annually
[20]. One way to analyze changes in extreme rainfall is to use
statistical distribution models. Tese models are useful for
studying extreme rainfall and can aid in foodmitigation and
control [21, 22]. Numerous probability distributions can be
employed to analyze extreme rainfall patterns. However, it is
important to note that the data frequently exhibits non-
normal distribution characteristics across multiple regions.
While the Anderson-Darling and Kolmogorov-Smirnov
tests have often been used for ftting probability distribu-
tions, they may not be sensitive enough to identify sub-
stantial deviations from an assumed distribution at
a particular location [20]. To address this issue, researchers
suggest utilizing L-moments as a reliable method to estimate
higher statistical moments. Te L-moments method allows
for reasonable estimates to be obtained even with as small as
20 sample sizes and without making assumptions about the
underlying distribution [20, 23]. Tis method also ofers an
excellent ft to the entire cumulative distribution function
using only a limited number of parameters.

Several researchers [24–28] have used L-moments to ft
probability distributions of extreme rainfall series, providing
a powerful alternative for ftting probability distributions of
non-normally distributed data, which is particularly im-
portant when dealing with extreme rainfall data where
signifcant deviations from an assumed distribution can
occur at a specifc location.

Tis study aims at fnding the most suitable probability
distribution model for the extreme rainfall series utilizing
data from Southern Highlands, Tanzania, and to estimate the
extreme rainfall amounts that might occur once in 5, 10, 20,
50, and 100 years to come. Te L-moments help guide the
selection of candidate distributions and provide insights into
the shape of the data. It is used to perform distribution

analysis to select the best distributions. Te L-moments
method is a popular approach for analyzing the statistical
properties of hydrological variables, especially in regions
with limited data [29]. Tis study applies fve distinct
probability distribution models, namely, the GEV, gener-
alized pareto (GPD), generalized logistic (GLO), generalized
normal (GNO), and the Pearson type three (PE3) distri-
butions in order to evaluate the best ft model. Tese dis-
tributions are chosen due to their simplicity, superior
performance, and widespread usage in frequency analysis of
extreme events, as highlighted by [20, 23, 30]. It is widely
acknowledged that numerous approaches have been ex-
tensively employed to estimate the parameters of potential
probability distributions, such as the maximum likelihood
method, method of moments, L-moments method, and least
squares method [22, 31–33]. Nonetheless, the Bayesian
method has not seen widespread utilization. In this research,
we utilize the maximum likelihood estimation, L-moments,
and Bayesian method to determine the parameters for the
chosen probability distribution, and we conduct an extreme
value analysis of annual maximum daily rainfall to compare
the efcacy of the frequentist approach with the Bayesian
approach. Bayesian modeling allows for more supplemen-
tary information via prior knowledge, which can improve
statistical inference on extremes, considering that extreme
data are rare by nature [8].

Overall, it is crucial to model extreme rainfall to un-
derstand its potential impacts and inform policy decisions
[15, 17, 34, 35]. By using appropriate modeling techniques,
we can better understand the behavior of extreme rainfall
patterns and how often they occur in the Southern High-
lands of Tanzania and help mitigate their efects on the
economy, agriculture, and society [36]. Te rest of this work
is structured as follows: Te data, study area, and meth-
odologies for model ftting are described in Section 2 along
with the best ftting techniques. Lastly, the statistical analysis
results of the most suitable model are presented in Section 3,
whereas Discussion and Conclusions are presented in
Section 4 and Section 5, respectively.

2. Methods

2.1. Study Area. Figure 1 shows the study area that covers
four stations in the Southern Highlands of Tanzania, which
is the administrative zone comprised of the four regions:
Iringa, Rukwa, Mbeya, and Ruvuma. Te Highlands zone is
at latitude 05° − 11° S and longitude 30° − 39° E. Te rainfall
amount in the area varies between 823 mm to 2,850 mm.
Te rainy season occurs from November to April. During
dry season, higher elevation regions face some light rain and
mists from May to August. Most rainfall is attributed to
thunderstorms forming over the Lake Nyasa (Lake Malawi),
and the areas facing towards the lake tend to receive more
rain. Te highlands have lower temperatures ranging from
13° C to 19° C than the surrounding lowlands. Te highest
elevated regions face nighttime frosts regularly from June to
August.
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2.2. Data Description. Rainfall data (in millimeters) was
collected from the Tanzania Meteorological Authority
(TMA) from four diferent weather stations in the Southern
Highlands over a period of 31 years from 1990 to 2020. Each
station represents a diferent region in the highlands and has
its own unique rainfall patterns and location. Because the
data were analyzed station by station, a test for homogeneity
was not relevant for this study.

As per information provided by the TMA in 2011 and
2019 [15, 17], rainfall that exceeds 50mm within a 24-hour
period is classifed as intense (or extreme) and has the
potential to result in fooding. Figure 2 presents the original
daily rainfall data spanning from 1990-2020, depicting in-
stances of extreme rainfall occurrences exceeding the
threshold of 50mm for each region as indicated by the values
above the red line (i.e, rainfall > rbin 50mm).

2.3. Probability Distributions. Extreme value theory has
emerged as a crucial statistical discipline in the feld of
meteorology and hydrology, playing a signifcant role over
the past six decades. Tis has led to its widespread adoption
in numerous research studies. While many probability
distributions can be applied to represent empirical rainfall
extremes [22], this study focuses on fve commonly used
distributions: GPD, GLO, GNO, PE3, and GEV distribu-
tions. Te aim is to identify the most suitable distribution
that best fts the empirical annual rainfall extremes.
Leveraging L-moments, we determine the best ft distribu-
tion and utilize it to analyze and predict extreme rainfall
patterns in the Southern Highlands Region of Tanzania. By
employing maximum likelihood, L-moments, and Bayesian

methods to estimate the parameters μ, σ, and ξ, we gained
valuable insights into the behavior of extreme rainfall events.
Te best ft model facilitates the estimation of return levels
for extreme rainfall, which is essential in designing robust
infrastructure and efective food protection measures.

2.3.1. Generalized Extreme Value (GEV). Te GEV distri-
bution arise from a combination of three models, namely,
the Gumbel, Frechet, and Weibull whose cumulative dis-
tribution function as given by [9, 20, 22] is as follows:

F(x) � exp − 1 + ξ
x − μ
σ

􏼒 􏼓􏼔 􏼕
− (1/ξ)

􏼨 􏼩, (1)

defned on the set of values x: 1 + (ξ(x − μ)/σ)> 0􏼈 􏼉. Te
parameters of this family of models satisfy the conditions
− ∞< μ<∞, σ > 0 and − ∞< ξ <∞. Te distribution in
question was independently discovered by both [37, 38]. Its
three parameters, namely, location μ, scale σ, and shape ξ are
used to classify it into three types of extreme value distri-
butions, with ξ being the key diferentiating factor. When
ξ > 0 and ξ < 0, the distribution falls under Frechet, and
Weibull, respectively. When ξ � 0, it corresponds to the
limit as ξ⟶ 0 of equation (1), leading to the Gumbel family
of distributions.

2.3.2. Generalized Pareto (GPA). Te cumulative distribu-
tion function for GPA is given as [20]:

F(x) � 1 − exp(− y), (2)

whereby

y � − ξ− 1log 1 −
ξ
σ

(x − μ)􏼠 􏼡, (3)

σ, μ, and ξ are scale, location, and shape parameters. Te
range of x is given by

Range of  x �

μ +
σ
ξ

􏼠 􏼡≤x<∞, ξ < 0,

Exponential distribution, ξ � 0,

− ∞<x< μ +
σ
ξ

􏼠 􏼡, ξ > 0,

Uniform distribution, ξ � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

2.3.3. Generalized Logistic (GLO). Te cumulative distri-
bution function for GLO given by [20, 39] is as follows:

F(x) �
1

1 − exp(y)
, (5)

whereby
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Figure 1: Tanzania map showing the Southern Highlands regions.
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y � − ξ− 1log 1 −
ξ
σ

(x − μ)􏼠 􏼡, (6)

σ, μ, and ξ are scale, location, and shape parameters. Te
range of x is given by

Range of  x �

μ +
σ
ξ

􏼠 􏼡≤x<∞, ξ < 0,

Logistic distribution, ξ � 0,

− ∞<x< μ +
σ
ξ

􏼠 􏼡, ξ > 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

2.3.4. Generalized Normal (GNO). Te probability density
function (PDF) and the cumulative probability distribution
(CDF) for the GNO distribution are respectively given by

f(x) �
ξ

2σΓ(1/ξ)
exp −

|x − μ|

σ
􏼠 􏼡

ξ
⎡⎢⎣ ⎤⎥⎦,

F(x) �
1
2

+
1
2
sign(x − μ) 1 − exp −

|x − μ|

σ
􏼠 􏼡

ξ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(8)

where σ, ξ, and μ are the scale, shape, and location pa-
rameters, respectively. Te range of x is defned as follows:

Range of  x �

− ∞<x<∞, ξ > 1,

Semi − infinite  interval, ξ � 1,

Finite  interval, ξ < 1.

⎧⎪⎪⎨

⎪⎪⎩
(9)

2.3.5. Pearson Type Tree (PE3). PE3 has the following
cumulative probability distribution [20]:

F(x) �
1

σΓ(ξ)
􏽚

x

0

y − μ
σ

􏼒 􏼓
ξ− 1

exp −
y − μ
σ

􏼒 􏼓dy, (10)
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Figure 2: Daily rainfall distribution.
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μ, σ, ξ are the location, scale, and shape parameters and Γ(•)

denotes the Gamma function given by

Γ(x) � 􏽚
∞

0
(t)

ξ− 1exp(− t)dt. (11)

2.4. L-Moments Method. L-moments are based on linear
combinations of data or statistics that are sorted in as-
cending order [40, 41]. Tey are an improvement over
normal moments for assessing probability distribution
shape and estimating parameters, especially for small sample
sizes. According to [42], L-moments can be computed
linearly using Shifted Legendre Polynomials and the uni-
form distribution function as the foundation, providing
a more robust estimate for a given amount of data. Te frst
four L-moments of a probability distribution can be cal-
culated using a sorted sample vector (Xi: n) of length n,
ranked value i′th, and expected value function E as follows:

λ1 � E X1:1( 􏼁,

λ2 �
1
2

E X2:2 − X1:2( 􏼁,

λ3 �
1
3

E X3:3 − 2X2:3 + X1:3( 􏼁,

λ4 �
1
4

E X4:4 − 3X3:4 + 3X2:4 − X1:4( 􏼁.

(12)

Based on the information presented above, it is evident
that the frst L-moment represents the mean value of a data
set by calculating the expected value of all individual values.
Te second L-moment, on the other hand, measures the
expected diference between the largest and smallest values
in the data set and is equal to half of this expected value.

2.4.1. L-Moments Ratios. Te second L-moment is always
normalized by the mean value, resulting in a L-moment
coefcient of variability (L-Cv) calculated as the ratio of the
second L-moment to the frst L-moment:

L − Cv(τ) �
λ2
λ1

. (13)

Higher L-moment ratios are obtained by scaling the
corresponding higher L-moments using the second L-
moment as a reference point [29]:

L − Skewness τ3( 􏼁 �
λ3
λ2

,

L − Kurtosis τ4( 􏼁 �
λ4
λ2

.

(14)

Te L-Cv (τ) is similar to the standard CV and L-
skewness (τ3) measures the lack of symmetry in a distri-
bution, while L-kurtosis (τ4) measures the peakedness of the
distribution. L-skewness and L-kurtosis are constrained to
lie between (− 1,1) and L-kurtosis is bounded by τ3 to be not

less than − 0.25. L-moments can estimate many probability
distributions and are computed from probability-weighted
moments. More information can be found in [43].

2.4.2. Probability Weighted Moments. According to [20, 39],
probability-weighted moments (PWM) are calculated from
sorted data values, where x1: n ≤ . . . ≤xn: n represents the
sorted sample of size n. Te PWMof order r is defned by the
following equation:

βr � E X[F(X)]
r

􏼈 􏼉, (15)

where E •{ } is the expectation and F(X) is the cumulative
distribution function of a random variable X. Te estimators
of PWM can be obtained using the equation as given by
[20, 39]:

br � n
− 1

􏽘

n

j�r+1

(j − 1)(j − 2) . . . (j − r)

(n − 1)(n − 2) . . . (n − r)
xj:n. (16)

Te frst four unbiased sample L-moments (estimators)
are given by [20] as follows:

l1 � bo

l2 � 2b1 − bo

l3 � 6b2 − 6b1 + bo

l4 � 20b3 − 30b2 + 12b1 − bo.

(17)

Te sample L-moment ratios are given by

tr �
lr

l2
, (18)

where t and tr are the natural estimators of τ and τr re-
spectively, and the sample L-Cv is given by

t �
l2

l1
, 0≤ t< 1. (19)

2.4.3. L-Moment Ratio Diagram. Te L-moment ratio dia-
gram is a helpful tool for analyzing and testing the ft of
probability distributions. Tis technique involves plotting L-
Skewness (τ3) versus L-Kurtosis (τ4) and is commonly used
to choose the most viable probability distribution for a given
dataset. In the study by [20], two-parameter distributions
were represented as points on the diagram, while three-
parameter distributions were depicted as lines. Te best ft
distribution was determined by comparing the location of
the data point (τ3, τ4) to the line representing the candidate
distribution and by measuring the distance between (τ3, τ4)
and (τ3, τDist4 ), where (τ3) and (τ4) represent the skewness
and kurtosis values of the observed data, and (τDist4 ) is the
kurtosis value of the candidate distribution [20].

2.4.4. Block Maxima Technique. Te extreme values of a set
of independent observations, X1, X2, . . . , Xn, were analyzed
by splitting the data set into m blocks, each of length n, such
that n is a large number. By taking the maximum value
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within individual blocks, a new set Mn,1, Mn,2, . . . , Mn,m is
generated, that can be modeled using the appropriate ex-
treme value probability distribution. It is important to
choose an appropriate block size, since if n is too small, the
limit model may not provide a good approximation, which
can lead to biased parameter estimation and unreliable
extrapolation. Conversely, when n is extra large, the number
of blocked maximum will be insufcient, causing large
variances in estimation. Tus, it is essential to fnd a com-
promise between bias and variance.

2.5. L-Moments Estimation Method. Te L-moments
method estimates distribution parameters by comparing
the sample L-moments with the corresponding population
L-moments [39]. L-moments ofer quantifcations of loca-
tion, dispersion, skewness, kurtosis, and other aspects of
probability distributions or datasets.

2.5.1. L-Moments for Generalized Extreme Value
Distribution. TeGEV parameter estimates distribution has
three parameters: μ (location), α (scale), and ξ (shape). Te
L-moments parameter estimates for GEV were calculated
using the following expressions when ξ > − 1 [44]:

λ1 � μ + α
1 − Γ(1 + ξ){ }

ξ

λ2 � α
1 − 2− ξ

􏼐 􏼑Γ(1 + ξ)

ξ

τ3 � 2
1 − 3− ξ

􏼐 􏼑

1 − 2− ξ
􏼐 􏼑 − 3

τ4 �
5 1 − 4− ξ
􏼐 􏼑 − 10 1 − 3− ξ

􏼐 􏼑 + 6 1 − 2− ξ
􏼐 􏼑􏽮 􏽯

1 − 2− ξ
􏼐 􏼑

.

(20)

Te symbol Γ •{ } represents the gamma function, which
is defned as follows:

Γ(x) � 􏽚
∞

0
t
x− 1e− tdt. (21)

Te parameter ξ is approximated using the expression
ξ ≈ 7.8590c + 2.9554c2, where c is calculated as c � (2/
3 + τ3) − (log 2/log 3).

α �
λ2ξ

1 − 2− ξ
􏼐 􏼑Γ(1 + ξ)

,

μ � λ1 − α
1 − Γ(1 + ξ){ }

ξ
.

(22)

For more information about L-moments of various
probability distribution models, refer to [44].

2.5.2. Maximum Likelihood Estimation Method. MLE aims
to identify model parameters that optimize the likelihood
function with respect to those parameters. However, MLE is
most efective when sample sizes are large (as n≥ 30). De-
spite this, some researchers still prefer to use MLE even with
small sample sizes because it can provide accurate estimates
for certain values of the shape parameter. [9] commented
that MLE is reliable when the shape parameter (ξ) is greater
than − 0.5, but its consistency decreases when the shape
parameter is less than − 0.5.

2.5.3. ComputingMaximum Likelihood Parameter Estimates.
According to [9], if ξ ≠ 0, the log-likelihood function of the
GEV with three parameters can be expressed as follows:

l(ξ, μ, σ) � − n  log σ − 1 +
1
ξ

􏼠 􏼡 􏽘

n

i�1
log 1 + ξ

xi − μ
σ

􏼒 􏼓􏼔 􏼕 − 􏽘
n

i�1
1 + ξ

xi − μ
σ

􏼒 􏼓􏼔 􏼕
(− 1/ξ)

, (23)

given that [1 + ξ(xi − μ/σ)]> 0 for i � 1 . . . n

In addition, assuming that X � X1, . . . , Xn􏼈 􏼉 is a random
sample from the GPD with the extreme value X(n) above

a threshold u, the log-likelihood function of the GPD can be
obtained using the following equation provided by [33, 45]:

l(X; ξ, σ) �

− n  log σ +
1
ξ

− 1􏼠 􏼡 􏽘

n

i�1
log 1 −

ξXi

σ
􏼠 􏼡, if   ξ ≠ 0,

− n  log σ −
1
σ

􏽘

n

i�1
Xi, if   ξ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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Similary, MLE for other distributions were obtained but
not presented in this work.

2.6. Bayesian Modeling Method. In the Bayesian approach,
the model parameters may not be random, but they are
treated as random by assigning probability distributions to
describe the uncertainty of their values [21, 46]. According to
[47], three critical steps are involved in the Bayesian ap-
proach to parameter estimation, which include specifying
a probability model for the data, constructing the posterior
distribution, and checking the model for its outputs before
using them for inference.

2.6.1. Fundamental Principles. Let a dataset x � (x1, . . . , xn)

representing realizations of a random variable with a density
belonging to the parametric family F � f(x; θ): θ ∈ Θ as
detailed by [9]. Prior beliefs about the parameter θ can be
expressed using the probability density function π(θ), in-
dependent of the observed data. According to [9], the
likelihood for θ is given by:

L(θ | x) � f(x | θ),

� 􏽙
n

i�1
f xi; θ( 􏼁.

(25)

Te combination of prior knowledge and the probability
distribution of the data is achieved through Bayes’ theorem,
leading to the posterior distribution of θ as given by [9]

π(θ | x) �
π(θ)L(θ | x)

f(x)

�
π(θ)L(θ | x)

􏽒Θπ(θ)L(θ | x)dθ
.

(26)

where π(θ) is the prior distribution for θ, L(θ | x) is the
likelihood function, and π(θ | x) is the posterior distribution.

In extreme value analysis, the goal is often to predict the
probability of extreme events in the future based on ob-
served data. Te predictive distribution, which describes the
likelihood of diferent outcomes of a future experiment, can
be obtained within the Bayesian framework. If y represents
a forthcoming observation with a probability density
function denoted as f(y | θ), and π(θ | x) corresponds to the
posterior distribution of θ based on the observed data x, the
predictive distribution of y given x can be described as
follows [9]:

f(y | x) � 􏽚
Θ

f(y | θ)π(θ | x)dθ. (27)

Computing this integral may be difcult, but simulation-
based techniques like Markov chain Monte Carlo (MCMC)
can provide estimates of the posterior distribution through
a simulated sample [9]. Bayesian procedures can be ad-
vantageous when a suitable prior distribution can be
specifed [9]. Te main objective is to obtain a Markov chain
that converges to the posterior distribution in Bayesian

statistics. To accomplish this, there are several algorithms
available for implementing MCMC simulations, but this
study uses the Metropolis-Hastings algorithm.

2.7. Return Level Estimates. After ftting a probability dis-
tribution model to the data, the next step is to estimate the
return levels for rainfall. Te T-year return level, denoted as
xT, is the level that is exceeded on average only once in T
years. Te cumulative probability of nonexceedance can be
given by the following equation [9, 48]:

F(x) � Pr X≤xT( 􏼁 � 1 −
1
T

, (28)

where T is the return period. For instance, in order to obtain
xT from the GEV model with return period T, we need to
solve for x in equation (1) which gives the following [9, 48]:

xT �

μ −
σ
ξ

1 − − ln 1 −
1
T

􏼒 􏼓􏼚 􏼛
− ξ

􏼢 􏼣, if   ξ ≠ 0,

μ − σ ln − ln 1 −
1
T

􏼒 􏼓􏼒 􏼓, if   ξ � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

In addition, for the GPD model, the return level xm is
defned as the extreme level that is exceeded on average once
every m observations [9]. Tis is given by

xm �

μ +
σ
ξ

mζu( 􏼁
ξ

− 1􏼔 􏼕, if   ξ ≠ 0,

μ + σ   log mζu( 􏼁, if   ξ � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

where ζu represents the probability that the value X exceeds
the threshold u, i.e., ζu � Pr(X> u). Te quantity xm can
also be defned as the m-observations return level [9].

3. Results

3.1. Statistical Analysis. Te statistical analysis presented in
this section reveals some interesting insights about the yearly
maximum daily rainfall in four stations. According to the
results shown in Table 1, the Ruvuma region receives the
highest amount of rainfall, indicating that this region may be
more susceptible to fooding and other related hazards. In
contrast, Rukwa, the station with the lowest rainfall amount,
may experience some challenges related to water scarcity and
drought particularly during the dry seasons when water
sources dry up.Tese fndings underscore the signifcance of
considering local weather patterns and climatic conditions
when planning for development and resource management
in the region.

Using the block maxima method, Figure 3 displays the
annual maxima daily rainfall data collected over a time
period of 31 years from four stations in the Highlands Re-
gion. Upon closer inspection, the results indicate that there
is no clear trend in the data, suggesting that these stations
have experienced a relatively stable pattern of extreme
rainfall events over the past few decades.
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3.2. Data Assumptions and Trend Detection Analysis.
Before engaging in extreme value modeling of rainfall data,
a thorough examination of the data’s underlying assump-
tions was conducted. Potential trends in the series, capable of
infuencing the modeling process, were carefully assessed for
normality, homogeneity, and stationarity. Tests such as
Shapiro [49, 50] and augmented Dickey-Fuller (ADF)
[51, 52] were employed for this purpose. Given the diverse
distribution of stations with varying rainfall patterns and
geographical locations, a station-by-station data analysis was
conducted, rendering the homogeneity test inapplicable for
this study. For more detailed procedures, refer to
[11, 19, 53, 54] and [55]. Table 2 displays the results, in-
dicating that the data fulfll the mentioned assumptions and
can be used for further analysis. Te study also analyzed the
Mann-Kendall trend test and Sen’s slope estimator for an-
nual maxima rainfall in all stations. Kendall’s tau, a measure
of the strength and direction of the trend in the data, in-
dicates a weak positive correlation between time and rainfall.
All p values are greater than 0.05, suggesting insufcient
evidence to reject the null hypothesis of no trend. Sen’s slope
values are relatively small, indicating a gradual increase in
rainfall over time. Te trend analysis results, illustrated in

Figure 4, suggest a weak positive trend in rainfall, aligning
with the return levels obtained in Table 3. Te fndings are
consistent with the study conducted by [56].

3.3. L-Moments Ratios. L-moments results, as shown in
Table 4, provide valuable insights into the characteristics of
extreme rainfall in these regions. Te λ1 values represent the
mean rainfall depth, with Ruvuma having the highest av-
erage rainfall depth of 74.3066. Te λ2 values indicate the
variability in rainfall depths, with Iringa having the lowest
spread (scale) of 8.34 kurtosis (τ4) and Skewness (τ3) values
reveal the heaviness of the tails, and the departure from
symmetry, respectively. Iringa shows a slightly right-skewed
distribution (0.3177) and a relatively high kurtosis (0.2267).
Te λ5 values refect the departure from symmetry in the
upper tail, with Iringa having a thicker upper tail (0.9665).
Te τr values represent the overall shape, and all stations
exhibit similar values, indicating moderate peakedness.
Tese fndings enable the construction of L-moment ratio
diagrams to identify the best-ft distribution for extreme
rainfall in each region, facilitating a comprehensive un-
derstanding of the rainfall characteristics and aiding in ef-
fective hydrological modeling.

Table 1: Descriptive statistical analysis of annual maximums.

Station Period Minimum 1st quartile Median Mean 3rd quartile Maximum
Iringa 1990–2020 39.50 46.85 53.95 58.20 62.85 106.90
Mbeya 1990–2020 37.10 42.80 53.25 54.47 64.08 93.20
Rukwa 1990–2020 32.60 45.05 50.45 54.39 61.40 89.90
Ruvuma 1990–2020 43.80 61.95 69.60 74.31 85.92 116.00
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Figure 3: Scatter plots for annual maxima rainfall.
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3.4. L-Moments Ratio Diagrams. Te study examined the
characteristics of extreme rainfall in the research area by
analyzing two key parameters: the coefcient of variation
denoted as τ and the mean represented by λ1. To ensure the
reliability of the results, the L-moments ratio diagram was
employed to assess the relative distribution of extreme
rainfall. Tis diagram played a crucial role in selecting the
most appropriate distribution among GPA, GNO, GEV,
GLO, and PE3 across the four stations. Based on the L-
moments ratio diagram results of Figure 5, it was evident
that the GEV distribution exhibited the best ft for extreme

rainfall in all four stations. Consequently, parameter esti-
mation for the GEV distribution was carried out using MLE,
L-moments, and Bayesian MCMC.

3.5. GEV Parameter Estimates. To estimate the GEV dis-
tribution, we extracted the blocked maximum of daily an-
nual maximum rainfall data from all four stations, using
blocks of n � 365 days to ensure that our samples were
sufciently large. We then applied maximum likelihood
estimation to ft the model to the N � 31 annual maximum.

Table 2: Assumptions on extreme rainfall series using diferent tests.

Station Shapiro-Wilk ADF test Kendall’s tau Sen’s slope
Iringa 0.8967 (0.218) − 14.399 (0.00008) 0.053 (0.694) 0.169
Mbeya 0.8941 (0.341) − 3.7967 (0.0029) 0.0368 (0.789) 0.18
Rukwa 0.8639 (0.089) − 4.2256 (0.000596) 0.0621 (0.643) 0.100
Ruvuma 0.9013 (0.175) − 3.566 (0.000643) 0.0322 (0.817) 0.125

80

100

60

Ra
in

fa
ll 

(m
m

/m
on

th
)

40

20

0
1992 1996 2000 2004

Year

Iringa temporal plot

Trend
Rainfall

Trend
Rainfall

Iringa

2008 2012 2016 2020

80

60

Ra
in

fa
ll 

(m
m

/m
on

th
)

40

20

0
1992 1996 2000 2004

Year

Mbeya temporal plot

Mbeya

2008 2012 2016 2020

Figure 4: Temporal plots for monthly maxima rainfall.

Table 3: Return level estimates using MLE, L-moments, and Bayesian MCMC.

Return period MLE method L-moments method Bayesian MCMC method
5-years 66.81 (58.20–75.41) 59.47 (66.70–77.26) 60.20 (72.51–92.87)
10-years 77.69 (62.87–9.50) 65.31 (77.53–93.11) 67.86 (87.84–133.75)
20-years 90.22 (64.92–115.51) 71.26 (89.51–111.64) 75.72 (107.68–201.07)
50-years 110.16 (62.22–158.10) 77.55 (108.11–151.27) 85.11 (145.42–364.48)
100-years 128.45 (54.56–202.344) 81.20 (124.74–194.38) 91.83 (188.40–584.76)

Table 4: L-moments results.

Parameter Iringa Ruvuma Mbeya Rukwa
λ1 58.1 74.3066 55.6933 54.4667
λ2 8.34 9.7536 8.7222 7.6584
λ3 2.649 1.4908 0.0297 1.0784
λ4 1.857 1.2427 1.1082 0.6319
λ5 0.9665 0.1976 − 0.4153 0.9003
τ3-skewness 0.3117 0.1528 0.2373 0.1408
τ4-kurtosis 0.2267 0.1274 0.1271 0.0825
τr 0.1433 0.1313 0.1566 0.1406
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Also, the Bayesian MCMC was used to provide the Bayesian
parameters of the annual maxima rainfall using non-
informative priors. When selecting noninformative priors
for GEV modeling, we minimized prior infuence to allow
the data to play a key role in shaping the posterior distri-
bution [57]. For the location parameter μ, we deployed
a Normal distribution that is broad and symmetric distri-
bution centered at 0. Te scale parameter σ, was modeled
with a wide normal distribution to encompass the expected
range of extreme values. Similarly, a normal distribution that
permits a wide range of shapes, indicating minimal prior
information about the tail behavior was used for the shape
parameter ξ. Following the methodology outlined by
[2, 57, 58], the joint density of our parameters α, μ, and ξ was
represented as f(α, μ, ξ) � fα(α)fμ(μ)fξ(ξ).

Tus for the noninformative priors we employed the
following: fα(α) ∼ N(0, 10000), fμ(μ) ∼ N(0, 10000), and
fξ(ξ) ∼ N(0, 10000). Here, N(0, 10000) denotes a normal
distribution with a mean of 0 and a variance of 10,000,
ensuring a high variance to afrm the absence of external
information.

Table 5 shows the outcomes for MLE, L-moments, and
Bayesian posterior parameter estimations for the GEV over
all four stations. We plotted the diagnostic plots for the GEV
model for all three methods as shown in Figures 6–8. Te
model diagnostic plots for rainfall at Iringa exhibit a satis-
factory ft for the GEV distribution across all methods.
Although we conducted similar diagnostic plots for the other
stations, we have not included them in this study. Never-
theless, all important diagnostic plots including quantile
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plot, the probability plot, density plot, and the return level
plot present compelling evidence that GEV distribution is an
appropriate model that fts the block maxima data in all
stations.

From Table 5, theMLE shows that the shape parameter ξ,
was estimated to be 0.249 for Iringa, 0.089 for Mbeya, − 0.06
for Rukwa, and 0.0199 for Ruvuma. Te positive values for
Iringa and Mbeya indicate that these two regions have an
upper bound, while the negative value for Rukwa indicates
a lower bound. Te value for Ruvuma is close to zero, in-
dicating that the distribution for this region is approximately
unbounded. Notably, the confdence interval for ξ contains
0, indicating that a Gumbel distribution can also provide
a better ft for the data. Tis fnding is supported by the
profle confdence interval for ξ, which clearly shows that the
value ξ � 0 falls well within the interval for all stations. Te
values have small diference when L-moments and Bayesian
MCMC were used. Te MCMC estimation results revealed
the existence of an upper fnite endpoint to the distribution
due to positive shape parameter. Tis estimation is in
agreement with the MLE approach when used for Iringa
station.Te diagnostic plots for GEV estimation indicated in
Figures 6–8 shows in all methods the empirical quantiles are
linearly related with model quantiles. In both methods
simulated data are right-distributed and afected by extreme
values.

3.6. Trace Plots and Posterior Densities Analysis. Trace plots
and posterior densities obtained from Bayesian MCMC
analysis for the GEV distribution provide valuable insights
into the parameters of extreme rainfall distribution in the
regions. According to Figure 9, the trace plots show the
convergence and mixing of the MCMC chains, indicating
reliable parameter estimation.Te absence of a trace plot for
the shape parameter (ξ), indeed shows that the estimated
shape parameter is close to zero. Tis indicates that the data
may also be well-ftted by the Gumbel distribution, which is
a special case of the GEV distribution with a shape parameter
of zero. Te reason behind this behavior is that the shape
parameter determines the tail behavior of the distribution.
When the estimated shape parameter is close to zero, it
suggests that the tails of the data are not signifcantly heavy
or light compared to the Gumbel distribution, which has
a standard exponential tail. Terefore, the model is efec-
tively converging towards the Gumbel distribution, and the
trace plot for the shape parameter may not be displayed.

Te posterior densities of the location parameter (μ),
and scale parameter (σ) provide information about the
uncertainty associated with these parameters. Based on the
trace plots and well-defned posterior densities, we can
conclude that the MCMC algorithm has successfully ex-
plored the parameter space and converged to stable esti-
mates for μ, σ, and ξ.Tis indicates that the BayesianMCMC
method is efective in estimating the parameters of the GEV
distribution for extreme rainfall in Iringa. Similary, fairly

good trace plots and posterior densities for the GEV dis-
tribution parameters were obtained for other stations but
not presented in this work.

3.7. Rainfall Return Levels for Diferent Return Periods.
Te return level estimates obtained using diferent methods
provide important insights into the potential intensity of
extreme rainfall events in Iringa. Te 100-year return level
estimated using maximum likelihood estimation (MLE), is
projected to be 128.45 mm of annual daily maximum
rainfall, with a confdence interval ranging from 54.56 mm
to 202.344 mm. Tis implies that, without intervention to
mitigate climate change, Iringa could experience intense
rainfall events of suchmagnitudes once every hundred years.
Te Bayesian MCMC method, which incorporates un-
certainty quantifcation, provides a slightly lower estimate
for the 100-year return level at 91.83 mm, with a wider
confdence interval ranging from 188.40 mm to 584.76 mm.
Tis suggests that the Bayesian approach acknowledges the
inherent uncertainties in the estimation process and presents
a broader range of possible outcomes. Comparatively, the L-
moments method estimates the 100-year return level at
81.20 mm, with a narrower confdence interval ranging from
124.74 mm to 194.38 mm. Tese variations in estimates
across methods highlight the importance of considering
diferent approaches and their associated uncertainties in
assessing extreme rainfall patterns. As the return period
increases, both the estimated return levels and the width of
the confdence intervals tend to increase, indicating a higher
likelihood of more intense rainfall events occurring over
longer periods. Table 3 presents the estimations of return
levels for diferent return periods in Iringa. Similar return
levels for diferent return periods were made for other
stations but were not presented in this study. Tese fndings
provide valuable information for understanding the po-
tential risks associated with extreme rainfall in the regions
and can aid in decision-making for infrastructure planning
and climate adaptation strategies.

3.8. Performance ofMLE, L-Moments, and BayesianMethods.
Table 6 presents the performance comparison of Bayesian
MCMC,MLE, and L-moments, in estimating the parameters
of the GEV distribution. Te evaluation is based on two
metrics, MAE (mean absolute error) and RMSE (root mean
square error). Te results show that the Bayesian MCMC
method achieved the lowest MAE (0.312) and RMSE (0.243)
values compared to the other two methods. Tis indicates
that the BayesianMCMCmethod provides estimates that are
closer to the true values of the GEV distribution parameters,
resulting in smaller prediction errors on average. Te MLE
method obtained slightly higher MAE (0.327) and RMSE
(0.268) values compared to the Bayesian MCMC method,
indicating slightly larger prediction errors. On the other
hand, the L-moments method yielded the highest MAE
(0.342) but had a lower RMSE (0.253) compared to the MLE
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Table 5: MLE, Bayesian MCMC, and L-moments parameter estimates.

Region
MLE Bayesian MCMC L-moments

μ σ ξ μ σ ξ μ σ ξ
Iringa 50.31 9.072 0.249 (0.174) (− 0.091, 0.5899) 48.92 9.446 0.298 (0.135) 50.212 9.333 0.218 (0.152)
Mbeya 48.15 11.19 0.089 (0.156) (− 0.216, 0.3948) 51.27 12.45 0.172 (0.112) 50.41 10.74 0.137 (0.168)
Rukwa 66.81 14.24 − 0.06 (0.142) (− 0.338, 0.218) 50.72 11.1 0.258 (0.143) 50.61 9.9 0.184 (0.212)
Ruvuma 48.15 10.50 0.0199 (0.194) (− 0.359, 0.3993) 52.99 9.94 0.255 (− 0.079) 52.52 8.83 0.174 (0.188)
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method. Tis suggests that the L-moments method has
a higher average prediction error but exhibits less variability
in the predictions.Based on these fndings, we can conclude
that the Bayesian MCMCmethod outperforms the MLE and

L-moments methods in estimating the parameters of the
GEV distribution for the given rainfall data. It provides more
accurate and precise parameter estimates, resulting in better
predictions of extreme rainfall events.
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4. Discussion and Conclusion

Te statistical analysis of yearly maximum daily rainfall at
four stations revealed valuable insights into the rainfall
patterns and characteristics in the Highlands Region. Te
results demonstrated signifcant diferences in rainfall
amounts among the stations, with Ruvuma receiving the
highest amount and Rukwa experiencing the lowest. Tis
suggests that the Ruvuma region may be more susceptible to
fooding and related hazards, while Rukwa may face chal-
lenges related to water scarcity and drought during the dry
seasons. Te analysis of the annual maxima rainfall data
using the Block Maxima method indicated a relatively stable
pattern of extreme rainfall events over the past few decades,
without a clear trend. Tese fndings imply that the risk of
fooding or other related hazards in these regions may re-
main constant over time. However, it is crucial to continue
monitoring weather patterns and extreme events to ensure
the implementation of appropriate measures for protecting
people and infrastructure from the impacts of climate
change.

Te L-moments ratios provided further insights into the
characteristics of extreme rainfall. Te values of λ1 (mean
rainfall depth) showed that Ruvuma had the highest average
rainfall depth, while Rukwa had the lowest spread (scale)
represented by λ2. Te kurtosis (τ4) and skewness (τ3)
values indicated the heaviness of the tails and the departure
from symmetry, respectively. Iringa exhibited a slightly
right-skewed distribution and relatively high kurtosis.Te λ5
values refected the departure from symmetry in the upper
tail, with Iringa having a thicker upper tail. Overall, the L-
moments ratios suggested that the extreme rainfall in these
regions had moderate peakedness and varying degrees of tail
heaviness and asymmetry.

Te L-moments ratio diagrams played a crucial role in
identifying the best-ft distribution for annual extreme
rainfall in each region. Te analysis showed that the GEV
distribution provided the best ft for extreme rainfall in all
four stations, as indicated by Figure 5. Te fnding was
further supported by the parameter estimation using
maximum likelihood estimation (MLE), L-moments, and
Bayesian Markov Chain Monte Carlo (MCMC) methods.
Tis fnding corroborates previous research by [17, 59]
highlighting the efectiveness of the GEV distribution in
characterizing extreme events.

Te GEV parameter estimates revealed important
characteristics of the rainfall distributions in the study area.
Te shape parameter (ξ) values indicated whether the
distributions had upper or lower bounds or were un-
bounded. Iringa and Mbeya exhibited positive shape pa-
rameters, suggesting an upper bound, while Rukwa had
a negative shape parameter, indicating a lower bound.

Ruvuma had a shape parameter close to zero, implying an
approximately unbounded distribution. Te confdence
intervals for ξ contained the value of 0, indicating that
a Gumbel distribution could also provide a reasonable ft for
the data. Tis fnding is supported by the absence of a trace
plot representing the shape parameter (ξ), indicating that
the estimated shape parameter is near zero. Tis suggests
that the data could be well-suited for ftting the Gumbel
distribution, which is a special case of the GEV distribution
with a shape parameter of zero.Tis behavior stems from the
fact that the shape parameter infuences the tail character-
istics of the distribution. When the estimated shape pa-
rameter is close to zero, it implies that the data’s tails are not
signifcantly heavier or lighter compared to the Gumbel
distribution, which has a standard exponential tail.

Additionally, the estimation of return levels based on the
GEV distribution provided valuable information on the
magnitude and frequency of extreme rainfall events in the
Highlands Region. Te results of this study provide valuable
insights into extreme rainfall patterns and their impacts in
the Southern Highlands Region of Tanzania. However, it is
crucial to acknowledge that each region may possess unique
characteristics that infuence the occurrence and conse-
quences of extreme rainfall. As such, caution should be
exercised when generalizing these fndings to other loca-
tions. Nonetheless, the methodology and analysis employed
in this study can be universally applied as a framework for
deducing the best-ft distribution that characterizes extreme
rainfall behaviors. By utilizing a rigorous statistical approach
and considering relevant climatic factors, this study has
contributed to understanding the underlying patterns of
extreme rainfall events in Southern Highlands Region of
Tanzania. Te fndings can serve as a basis for similar studies
in diferent regions, adapting the methodology to the specifc
local context.

Furthermore, the identifcation of potential links be-
tween extreme rainfall and climate change in Tanzania
highlights the need for further research and analysis. To
achieve a more comprehensive understanding of the uni-
versal aspects of extreme rainfall patterns and their impli-
cations for climate change adaptation worldwide, it is
essential to undertake broader studies encompassing mul-
tiple regions and considering a longer time span. Such
studies could explore the infuence of global climate change
phenomena on regional extreme rainfall events, facilitating
the development of more efective adaptation andmitigation
strategies.
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Table 6: Performance comparison of MLE, L-moments, and Bayesian MCMC.

Methods MAE RMSE
Bayesian MCMC 0.312 0.243
MLE 0.327 0.268
L-moments 0.342 0.253
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