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A B S T R A C T

The Diamondback Moth (Plutella xylostella) is a notorious agricultural pest that poses significant challenges
to cabbage production. In this study, we formulated and analyzed the deterministic differential equations to
capture the infestations dynamics of diamondback moth in a cabbages biomass, taking into account the use of
environmentally friendly pesticides. To study its dynamics we computed the threshold number, ℛ∗, based on
the pest-free equilibrium point. The results indicate that when ℛ∗ ≤ 1, the equilibrium point 𝜉1 is both locally
and globally stable. Conversely, when ℛ∗ > 1, the coexistence point becomes globally asymptotically stable.
The stability of the equilibrium points were both Locally and globally assessed using Ruth Hurwitz’s criteria for
local stability and Lyapunov functions for global analysis. A comprehensive numerical analysis was conducted,
confirming the substantial support for the analytical findings. Finally, this research suggests that in order to
reduce the impact of the diamondback moth, it is necessary to decrease the threshold value smaller than
a unity through the adoption of effective inter-cropping techniques and the use of environmentally friendly
pesticides.
1. Introduction

Cabbage is among the vegetables with nutritional values such as
vitamins, minerals and ascorbic acid to the human body [1]. Cabbages
lowers the incidences of getting chronic diseases such as cancer and
heart diseases [2]. As agricultural produce, it provides food and income
to farmers and foreign currency to the nation. Cabbage grows well in
areas with a rainfall of 300–500 mm; a temperature between 16–20 °C;
and a soil pH range of 6.0–6.5 [3,4].

In 2020, the global cabbage production reached approximately 71
million metric tons where China accounted for 48% of the total pro-
duction, while East Africa contributed around 21% [5]. Unfortunately,
cabbage crops are susceptible to various pest infestations, including
cutworms, cabbage moths, diamondback moths, and plant diseases,
which result in significant yield losses.

The Diamondback moth (DBM) scientifically called Pluttella xy-
lostela, is a highly destructive pest that infests cabbages and other
cruciferous vegetables, destroying the folliar tissues and heads of the
cabbages [6]. It originated in Europe but, due to its migratory behavior,
has spread worldwide, especially in the regions where cruciferous veg-
etables are grown [6]. DBM is prevalent in various African countries,
including Kenya, Egypt, Nigeria, Niger, Tanzania, and Uganda [6–9].

∗ Corresponding author.
E-mail address: pauld@nm-aist.ac.tz (D. Paul).

The DBM thrives in areas with temperature ranges between 6 °C and
30 °C [6]. The presence of pests, such as the diamondback moth (DBM),
in cabbage production leads to substantial economic losses for farmers.
Globally, the management of DBM incurs substantial costs, estimated
to be around 4 to 5 billion USD [8,10]. For instance, China incurs an
annual cost of USD 0.77 billion to manage DBM [11]; in India, DBM
causes an economic loss of 50% of 168 million USD per year [12,13];
and Africa the weekly cost of approximately USD 46,097,772 goes to
DBM management [10]. To alleviate the burden of DBM and enhance
cabbage production, it is crucial to implement integrated pest control
approaches. Integrated pest management strategies effectively suppress
pests while minimizing environmental impact. By adopting such ap-
proaches, farmers can mitigate the negative effects of DBM infestations
and improve cabbage production.

Integrated pest management (IPM) is a strategy used by farmers
to control the infestation of pest in the farm by employing multiple
pest control strategies [14–20]. These strategies encompass a range of
approaches such as Biological control: Farmers utilize biological agents
such as natural enemies (predators, parasitoids) to control pest popu-
lations [21–23]; Habitat management and cropping practices: Imple-
menting practices like crop rotation, inter-cropping, and maintaining
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suitable habitats for natural enemies can help manage pests effec-
tively [24–27]; Synthetic pesticides and chemicals: Carefully selected
synthetic pesticides may be used as a part of IPM strategies to control
pests when necessary [28–30].

Furthermore, the application of ecological modeling concepts can
be valuable in capturing and describing the complex processes within
agricultural ecosystems. The models helps to simulate and give the pre-
dictions of pest’s dynamics, to assess effectiveness of different control
measures, and optimize resource allocation for pest management. By
integrating ecological knowledge and mathematical modeling, farmers
can develop more holistic and effective IPM strategies that are tailored
to their specific agricultural ecosystems. This approach can contribute
to sustainable pest management practices and promote the overall
health and productivity of agricultural systems [31].

Different scholars employed statistical approaches to study the in-
festations dynamics of the DBM [32,33]. In a similar study, Dymex
modeling approach was applied to capture the infestation dynamics
and control of the pest by involving the climate, cropping patterns,
and natural enemies [26]. The study reveals that the use of biolog-
ical control techniques is significant for managing the diamondback
moth. The review that focused on application of bio-control agents
for DBM management.suggests that the pest is controlled through the
deployment of beneficial natural enemies [34]. On the other hand,
another study examines the phenology of the Diamondback moth and
the monitoring methods. This study reveals that the Diamondback
moth is managed through the application of pheromone traps [35].
Previous studies have made valuable contributions to understanding
the management of diamondback moth infestations in cabbage biomass
through modeling and statistical approaches. However, these studies
have not fully incorporated the application of selected pesticides with
minimal impacts to beneficial insects and the environment.

In this study, we address such a limitation by developing a com-
prehensive model system, allowing for a more accurate representation
of the infestation dynamics on cabbages. Our model system integrates
the use of selected pesticides that have minimal impacts on beneficial
insects and the environment. By carefully selecting and applying these
pesticides, we aim to mitigate the negative effects on beneficial insects
while effectively controlling diamondback moth infestations. This ap-
proach ensures a more sustainable and environmentally friendly pest
management strategy. We aspire to make a meaningful contribution to
the overall progress of effective and environmentally conscious inte-
grated control strategies for managing diamondback moth infestations
in cabbage production.

The rest of this paper is organized as follows: Section 2 elaborates
the formulation and analysis of the model while Section 3 expounds
upon the comprehensive global analysis of the model’s parameters.
In Section 4 we focused on discussions of the results. Finally, the
concluding remarks is detailed in Section 5.

2. Model formulation

We proposed a system of non linear differential equations that
capture the infestations dynamics of Diamondback moth on cabbage
biomass by incorporating the inter coping and environmentally friendly
pesticides. Our model system comprises of two populations: cabbage
and Plutella xylostela The Plutella xylostela population is divided into
our distinct developmental stages, namely Egg (𝐸), Larvae (𝐿), Pupae
(𝑃 ), and Adult moth (𝐴). These stages represent different phases of the
insect’s life cycle, encompassing its growth and transformation from
one form to another. The larva is considered to be an effective and
destructive stage that affects the folliar tissues, leaves, and heads of
the cabbages [36]. The cabbage is a seasonal vegetable harvested after
60–180 days of its growth [13]. We express the population density of
cabbage biomass per plot as 𝐶, assuming that the cabbage planting
takes place within a day at the start of the season.
2

𝛺

Table 1
Descriptions of the model parameters.
Parameters Descriptions of parameters

𝜆𝐿 Natural mortality rate of Larva
𝜆𝑃 Natural mortality rate of pupae
𝜆𝐸 Natural mortality rate of Eggs
𝛼−1𝐸 The average development time of the eggs
𝛼−1𝐿 Larval average growth time
𝛼−1𝑃 Pupal average growth time
𝜆−1𝐴 An average life span of an adult female moth
𝐾𝐶 The carrying capacity of the cabbage biomass
𝐾𝐸 The carrying capacity of the Eggs
𝐾𝐿 The carrying capacity of the Larva
𝜂 Biomass conversion
𝜓 Proportion of female adult moth
𝜔 Larvae cabbage attack rate
𝜙 Mortality rate of DBM at all stages due to intervention
𝑞 The number of eggs laid per female DBM moth per day
𝑟 Growth rate of cabbages

The developed model assumes the following: when food is scarce,
larvae exhibit cannibalistic behavior on younger larvae [37]; there is no
natural decay of cabbages since all advice from the farm experts and all
the conditions for cabbage growth are considered; the Cabbage biomass
grows at the rate 𝑟 to its carrying capacity 𝐾𝐶 . Let 𝜔 to be the DBM

aterpillar (larva) attack rate, 𝜂 be the efficiency of biomass conversion
nd 𝜙 is used as a farmer’s cropping methods (inter-cropping) and
se of selected pesticides. The use appropriate farming methods are
ssumed to reduce DBM outbreak and impact in the cabbage field by
factor 𝜙. This factor lies in the interval of 0 ≤ 𝜙 ≤ 1, and 𝐾𝐿 is the

nvironmental carrying capacity of DBM larvae, which is assumed to
ollow logistic growth.

The life cycle of Plutella xylostella begins with eggs, laid in clusters
n the underside of the cabbage leaves. Following a duration of 2 to
days, the eggs of Plutella xylostela hatch into larvae. These larvae

hen proceed to burrow into the leaves, causing damage to the soft
olliar tissues. After a period of 8 to 16 days, the larvae transition
nto the pupal stage. During this phase, the pupae no longer burrow
nto the leaves but instead feed on the external leaves. Basing on the
nvironment conditions the pupae stage last for the duration of 5–15
ays to turn to an adult moth [6].

We therefore propose the deterministic mathematical model to cap-
ure the dynamics of diamondback moth infestations in a cabbage
iomass. Based on the flow diagram presented in Fig. 1, where the
otted red line represents interaction and biomass conversion. Also,
represents the intervention strategy aiming at reducing the popu-

ation of DBM in all stages in the cabbages biomass, resulting into
stablishment of non linear differential equations described in Eq. (1).

𝑑𝐶
𝑑𝑡

= 𝑟
(

1 − 𝐶
𝐾𝐶

)

𝐶 − 𝜔𝐿𝐶,

𝑑𝐸
𝑑𝑡

= 𝜓𝑞
(

1 − 𝐸
𝐾𝐸

)

𝐴 − (𝜆𝐸 + 𝜙 + 𝛼𝐸 )𝐸,

𝑑𝐿
𝑑𝑡

= 𝛼𝐸

(

1 − 𝐿
𝐾𝐿

)

𝐸 + 𝜂𝜔𝐿𝐶 − (𝜆𝐿 + 𝜙 + 𝛼𝐿)𝐿,

𝑑𝑃
𝑑𝑡

= 𝛼𝐿𝐿 −
(

𝛼𝑃 + 𝜙 + 𝜆𝑃
)

𝑃 ,
𝑑𝐴
𝑑𝑡

= 𝛼𝑃𝑃 −
(

𝜙 + 𝜆𝐴
)

𝐴,

(1)

with initial conditions 𝐶(0) ≥ 0, 𝐸(0) ≥ 0, 𝐿(0) ≥ 0, 𝑃 (0) ≥ 0, 𝐴(0) ≥ 0
see Table 1).

.1. Boundedness of the model solution

heorem 1. There is a unique solution to non-linear ordinary differential
quation of model system Eq. (1) in R5

+ with the initial conditions of the
model system Eq. (1). The solution remains within a region denoted as

= {𝐶,𝐸,𝐿, 𝑃 , 𝐴} ≥ 0 in the positive real numbers space R5 .
+
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Fig. 1. The compartmental model diagram for the dynamics of DBM in a cabbage biomass.
The model consists of two populations: the cabbage biomass and
the diamondback moth stage populations. To check the boundedness,
we use the function 𝛷 to represent the growth stage population of
diamondback moth.

Proof. We let the function 𝛷 = 𝐸 + 𝐿 + 𝑃 + 𝐴 then,
𝑑𝛷
𝑑𝑡

= 𝑑𝐸
𝑑𝑡

+ 𝑑𝐿
𝑑𝑡

+ 𝑑𝑃
𝑑𝑡

+ 𝑑𝐴
𝑑𝑡
.

≤ 𝐴(𝜓𝑞 + 1) −
(

𝛽1𝐿 + 𝛽2𝑃 + 𝛽3𝐴
)

.

≤ 𝑚(𝜓𝑞 + 1) − ℎ𝛷,

for 𝑚 = max{𝐸(0),𝑀} and ℎ = min{𝛽1, 𝛽2, 𝛽3}.
𝑑𝛷
𝑑𝑡

+ ℎ𝛷 ≤ 𝑚(𝜓𝑞 + 1).

(2)

Solving Eq. (2) analytically we have the following:

𝛷(𝑡) ≤ 𝑚
ℎ
(𝜓𝑞 + 1)

(

1 − 𝑒−ℎ𝑡
)

+𝛷(0)𝑒−ℎ𝑡. (3)

As lim𝑡→∞𝛷(𝑡), then the solution of equation Eq. (2) becomes;

𝛷(𝑡) ≤ 𝑚
ℎ
(𝜓𝑞 + 1) . (4)

The solution is bounded for 0 ≤ 𝛷(𝑡) ≤ 𝑚
ℎ
(𝜓𝑞 + 1), and the solutions

of the proposed system Eq. (1) are in the region 𝛺 ∈ R5
+ such that

𝛷(𝑡) ≤ 𝑚
ℎ
(𝜓𝑞 + 1)+ 𝜖,∀𝜖 > 0, 𝑡→ 0. Therefore, the model Eq. (1) is well

posed in a region 𝛺. □

2.2. Positivity of the model solution

By using positive initial data we check if the solutions of system
Eq. (1) remains in R5

+ ∀𝑡 > 0.

Theorem 2. Let the initial conditions of the model system Eq. (1) be
satisfied, then the model solutions remain positive region 𝛺 ∈ R5

+, ∀ 𝑡 ≥ 0.

Proof. We consider first equation of the system Eq. (1), we establish
that
𝑑𝐶
𝑑𝑡

≤ 𝑟 𝐶
(

1 − 𝐶
𝐾𝐶

)

. (5)

Upon solving Eq. (5) and algebraic simplifications we have Eq. (6)

𝐶 ≤
𝐾𝐶 𝐶(0)

𝑒−𝑟𝑡
(

𝐾𝐶 − 𝐶(0)
)

+ 𝐶(0)
. (6)

As lim𝑡→∞ 𝐶, we get 0 ≤ 𝐶 ≤ 𝐾𝐶 , Thus, all feasible solutions of
the proposed model Eq. (1) remain in 𝛺 ∈ R5

+. Therefore, model is
well-posed and it is now sufficient to check its dynamics. □
3

2.3. Model equilibria

This subsection investigates the existence of equilibrium points in
system Eq. (1). The system possesses four positive equilibrium points
labeled as 𝜉0, 𝜉1, 𝜉2, and 𝜉3.

2.3.1. Equilibrium point 𝜉0
The system Eq. (1) has a trivial equilibrium point 𝜉0 = (0, 0, 0, 0, 0).

In the context of a farm, this equilibrium point suggests that in the
absence of cabbages, pests are not drawn to the farm. This implies that
the presence of cabbages acts as a primary attractant for the pests, and
without this food source, the pests are not naturally inclined to infest
the farm.

2.3.2. Pest-free equilibrium point 𝜉1
The system Eq. (1) has a pest – free equilibrium point 𝜉1 =

(

0, 0, 0, 0, 𝐾𝐶
)

. In the absence of the Diamondback moth population,
the cabbage biomass can indeed grow to its carrying capacity.

2.3.3. Cabbage-free equilibrium point 𝜉2
The system Eq. (1) has an equilibrium point 𝜉2 =

(

𝐸2, 𝐿2, 𝑃2, 𝐴2, 0
)

such that,

𝐸2 =
𝐾𝐸𝐾𝐿𝑑1𝑑2𝑑3𝑑4

(

ℛ∗ − 1
)

𝐾𝐸𝛼𝐸𝑑1𝑑2𝑑3 + 𝜓𝑞𝛼𝐸𝛼𝐿𝛼𝑃𝐾𝐿
, 𝐿2 =

𝐾𝐸𝐾𝐿𝑑1𝑑2𝑑3𝑑4
(

ℛ∗ − 1
)

𝛼𝐿𝜓𝑞𝛼𝑃 (𝐾𝐸𝛼𝐸 +𝐾𝐿𝑑2)
,

𝑃2 =
𝐾𝐸𝐾𝐿𝑑1𝑑2𝑑3𝑑4

(

ℛ∗ − 1
)

𝛼𝑃𝜓𝑞(𝐾𝐸𝛼𝐸 +𝐾𝐿𝑑2)
, 𝐴2 =

𝐾𝐸𝐾𝐿𝑑1𝑑2𝑑3𝑑4
(

ℛ∗ − 1
)

𝜓𝑞𝑑3𝑑4(𝐾𝐸𝛼𝐸 +𝐾𝐿𝑑2)
,

where: 𝑑1 = 𝛼𝐸+𝜙+𝜆𝐸 , 𝑑2 = 𝛼𝐿+𝜙+𝜆𝐿, 𝑑3 = 𝛼𝑃 +𝜙+𝜆𝑃 , 𝑑4 = 𝜆𝐴+𝜙,
and

ℛ∗ =
𝜓𝑞𝛼𝐸𝛼𝐿𝛼𝑃
𝑑1𝑑2𝑑3𝑑4

. (7)

Ecologically, the growth of the DBM populations can have detrimental
effects on cabbage biomass and potentially lead to the extinction of
cabbages in the affected area. This is due to the destructive feeding
habits of the DBM larvae, which consume cabbage heads and leaves.
When faced with food scarcity, adult Diamondback Moth (DBM) have
been observed to engage in cannibalistic behavior towards younger
larvae as a survival strategy to acquire nourishment [37].

In the context of this paper, ℛ∗ described in (Eq. (7)), is defined as
the average lifetime reproductive rate of a female diamondback moth
(DBM). This reproductive rate represents the total number of offspring
produced by a female DBM over the course of its entire lifespan.

If ℛ∗ > 1, it signifies that the diamondback moth population will
persist and thrive, leading to the destruction of cabbage leaves. This
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𝑟
(

1 − 𝐶
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)

− 𝑟𝐶
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− 𝜔𝐿 0 −𝜔𝐶 0 0

0 −
𝜓𝑞𝐴
𝐾𝐶

− 𝑑1 0 0 𝜓𝑞
(

1 − 𝐶
𝐾𝐶

)

𝜂𝜔𝐿
(

1 − 𝐶
𝐾𝐶

)

𝛼𝐿
𝛼𝐿𝐸
𝐾𝐿

+ 𝜂𝜔𝐶 − 𝑑2 0 0

0 0 𝛼𝐿 −𝑑3 0
0 0 0 𝛼𝑃 −𝑑4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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ontinuous infestation can ultimately result in the demise of cabbages,
eading to their extinction.

.3.4. Co-existence equilibrium point 𝜉3
The system Eq. (1) has an equilibrium point 𝜉3 =

(

𝐸3, 𝐿3, 𝑃3, 𝐴3, 𝐶3
)

uch that,

𝐸3 =
𝑞𝜓𝛼𝑃𝐾𝐸

(

𝛼𝐸𝑔3 +
√

𝑔23 − 4𝑔1𝑔2

)

2𝐾𝐸𝑔1𝑑1𝑑4 + 𝜓𝑞𝛼𝑃

(

𝛼𝐿𝑔3 +
√

𝑔23 − 4𝑔1𝑔2

) ,

𝐿3 =
𝑔3 +

√

𝑔23 − 4𝑔1𝑔2
2𝑔1

, 𝑃3 =
𝛼𝐿

(

𝑔3 +
√

𝑔23 − 4𝑔1𝑔2

)

2𝑔1𝑑3
,

𝐴3 =
𝛼𝑃

(

𝛼𝐿𝑔3 + 𝛼𝐸
√

𝑔23 − 4𝑔1𝑔2

)

2𝑔1𝑑1𝑑4
,

𝐶3 =
𝐾𝐶

(

2𝑔1𝑟 + 𝜂𝜔
(

𝑔3 +
√

𝑔23 − 4𝑔1𝑔2

))

2𝑔1
;

here: 𝑔1 = 𝜓𝑞𝜂𝜔𝐾𝐿𝐾𝐶𝛼𝐿𝛼𝑃 , 𝑔2 = (𝜂𝜔𝐾𝐶 + 𝑟)𝐾𝐿𝐾𝐸𝑑1𝑑2𝑑3 and 𝑔3 =
𝜓𝑞𝐾𝐿𝐾𝐶 (𝛼𝐿𝛼𝑃 (1 + 𝑟 + 𝑑2) + 𝜂𝜔𝑑1𝑑2𝑑3).

Therefore, co-existence equilibrium point 𝜉3 exists if condition
Eq. (8) holds.

𝑔23 − 4𝑔1𝑔2 ≥ 0. (8)

Theorem 3. The Co-existence equilibrium point 𝜉3 will exist if Eq. (8)
holds.

2.4. Local stability of the model equilibria

In this section, we examine the behaviors of the system Eq. (1) in the
neighborhood of its equilibrium points. The Jacobian matrix (Eq. (9))
is computed for each equilibrium point. To assess the stability of each
model equilibrium, we determined the eigenvalues of these matrices
(see Box I).

2.4.1. Evaluating Jacobian matrix (9) at 𝜉0

𝐽 (𝜉0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑟 0 0 0 0
0 𝛼𝐸 − 𝜆𝐸 0 0 0
0 𝛼𝐿 𝛼𝐿 − 𝜆𝐿 0 0
0 0 𝛼𝐿 −𝜆𝑃 − 𝛼𝑃 0
0 0 0 𝛼𝑃 −𝜆𝐴

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (10)

From the matrix (10) we can clearly observe that one of the eigenvalues
is positive, that is 𝜆1 = 𝑟 > 0. Therefore, this confirms that 𝜉0 is a saddle
4

point.
2.4.2. Evaluating Jacobian matrix (9) at 𝜉1

𝐽 (𝜉1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝑟 0 −𝜔𝐾𝐶 0 0
0 𝛼𝐸 − 𝜆𝐸 0 0 𝜓𝑞
0 𝛼𝐿 𝜂𝜔𝐾𝐶 − 𝑑2 0 0
0 0 𝛼𝐿 −𝑑4 0
0 0 0 𝛼𝑃 −𝑑4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (11)

pon observing the matrix Eq. (11), we can identify that one of the
igenvalues is negative, specifically 𝜆1 = −𝑟 < 0. The remaining
igenvalues are obtained from the characteristic polynomial presented
n Eq. (12):
4 + 𝑘1𝜆3 + 𝑘2𝜆2 + 𝑘3𝜆 + 𝑘4 = 0 (12)

here,
1 = 𝑑1 + 𝑑2 + 𝑑4 − 𝜂𝜔𝐾𝐶 .
2 = (𝑑1 + 𝑑2)(𝑑3 + 𝑑4) + 𝑑1𝑑2 + 𝑑3𝑑4 − 𝜂𝜔(𝑑1 + 𝑑3 + 𝑑4).
3 = 𝑑1(𝑑2𝑑4 + 𝑑2(𝑑3 + 𝑑4)) + 𝑑2𝑑3𝑑4 − 𝜂𝜔𝐾𝐶 (𝑑1(𝑑3 + 𝑑4) + 𝑑3𝑑4).
4 = 𝑑1𝑑2𝑑3𝑑4 − 𝜂𝜔𝐾𝐶 − 𝜓𝑞𝛼𝐸𝛼𝐿𝛼𝑃 .
he Routh Hurwitz Criteria for stability of 𝜉1 are;
{

𝑀1 = 𝑘1 > 0; 𝑘3 > 0; 𝑘4 > 0
𝑀2 = 𝑘1𝑘2𝑘3 − 𝑘23 − 𝑘

2
1𝑘4 > 0

(13)

heorem 4. A point 𝜉1 will be classified as locally asymptotically stable if
ll the conditions described in Eq. (13) are fulfilled. Conversely, if any of
hese conditions are not met, the point 𝜉1 will be deemed as unstable node.

.4.3. Local stability for 𝜉2
We have to evaluated the Jacobian matrix (9) at 𝜉2 which gives

(𝜉2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑟 −𝑤 0 0 0 0
0 −𝑦 0 0 𝑓
0 𝑘̂ 𝑚̂ 0 0
0 0 𝛼𝐿 −𝑑3 0
0 0 0 𝛼𝑃 −𝑑4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(14)

here,

=
𝐾𝐸𝐾𝐿𝜔𝑑1𝑑2𝑑3𝑑4

(

ℛ∗ − 1
)

(𝐾𝐸𝛼𝐸 +𝐾𝐿𝑑1𝑑2)𝜓𝑞𝛼𝐿𝛼𝑃
, 𝑚̂ =

𝜓𝑞𝛼𝐿𝛼𝑃 (𝐾𝐸𝛼𝐸 +𝐾𝐿𝑑1𝑑2)
𝐾𝐸𝑑1𝑑3𝑑4 + 𝜓𝑞𝐾𝐿𝛼𝐿𝛼𝑃

,

𝑓 =
𝜓𝑑1𝑑4(𝐾𝐸𝛼𝐸 +𝐾𝐿𝑑2)

𝐾𝐸𝛼𝐸𝑑1𝑑3𝑑4 + 𝜓𝑞𝛼𝐸𝛼𝐿𝛼𝑃
,

̂ =
𝐾𝐸𝑑1𝑑3𝑑4

𝜓𝑞𝛼𝐿𝛼𝑃 (𝐾𝐸𝛼𝐸 +𝐾𝐿𝑑1𝑑2)
,

𝑦 =
−𝑑1𝑑3𝑑4

(

2𝐾𝐿𝑑2 +𝐾𝐸𝛼𝐸
)

+ 𝜓𝑞𝛼𝐸𝛼𝐿𝛼𝑃
𝑑3𝑑4(𝐾𝐸𝛼𝐸 +𝐾𝐿𝑑3)

.

Observing the matrix (14) we see that one of the eigenvalues is
egative, specifically 𝜆1 = 𝑟−𝑤 < 0 iff 𝑤 > 𝑟 and ℛ∗ > 1 the remaining

eigenvalues are obtained from the characteristic polynomial Eq. (15)
given by

𝜆4 + 𝑐 𝜆3 + 𝑐 𝜆2 + 𝑐 𝜆 + 𝑐 = 0 (15)
1 2 3 4
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t
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𝜆

T
𝑏
𝑏

𝑏


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

𝑑
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p

T
i
a

P



where,
𝑐1 = 𝑑1 + 𝑑2 + 𝑑4 − 𝜂𝜔𝐾𝐶 ,
𝑐2 = (𝑑1 + 𝑑2)(𝑑3 + 𝑑4) + 𝑑1𝑑2 + 𝑑3𝑑4 − 𝜂𝜔(𝑑1 + 𝑑3 + 𝑑4),
𝑐3 = 𝑑1(𝑑2𝑑4 + 𝑑2(𝑑3 + 𝑑4)) + 𝑑2𝑑3𝑑4 − 𝜂𝜔𝐾𝐶 (𝑑1(𝑑3 + 𝑑4) + 𝑑3𝑑4),
𝑐4 = 𝑑1𝑑2𝑑3𝑑4 − 𝜂𝜔𝐾𝐶 − 𝜓𝑞𝛼𝐸𝛼𝐿𝛼𝑃 .
The Routh Hurwitz Criteria for stability of 𝜉2 are;
{

𝑁1 = 𝑐1 > 0; 𝑐3 > 0; 𝑐4 > 0
𝑁2 = 𝑐1𝑐2𝑘3 − 𝑐23 − 𝑐

2
1𝑐4 > 0

(16)

If 𝜆1 = 𝑟−𝑤 < 0 iff 𝑤 > 𝑟, ℛ∗ > 1 and the conditions stated in Eq. (16)
are satisfied and ℛ∗ > 1 then 𝜉2 is locally asymptotically stable point.

2.4.4. Local stability for co-existence equilibrium point 𝜉3
Evaluating Jacobian matrix (9) at 𝜉3 gives,

𝐽 (𝜉3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℎ1 0 ℎ2 0 0
0 ℎ3 0 0 ℎ4
ℎ5 ℎ6 ℎ7 0 0
0 0 𝛼𝐿 −𝑑3 0
0 0 0 𝛼𝑃 −𝑑4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (17)

where;
ℎ1 = 𝑟 − 2𝑟𝐶

𝐾𝐶
− 𝜔, ℎ2 = −𝜔𝐶, ℎ2 = −𝜔𝐶, ℎ3 = 𝑑1 −

𝜓𝑞𝐴
𝐾𝐸

, ℎ4 =

𝜓𝑞
(

1 − 𝐸
𝐾𝐸

)

, ℎ5 = 𝜂𝜔𝐿, ℎ6 = 𝛼𝐸

(

1 − 𝐿
𝐾𝐿

)

, ℎ7 = 𝜂𝜔𝐶 − 𝑑2 − 𝑟 −

𝛼𝐿𝐸
𝐾𝐿

.

We find the coefficients of the characteristic polynomial Eq. (18) of
he matrix (17). Basing on the Routh–Hurwitz criteria these coefficients
ill be used to conclude on the stability of 𝜉3.

4 + 𝑏1𝜆3 + 𝑏2𝜆2 + 𝑏3𝜆 + 𝑏4 = 0. (18)

he coefficients are; 𝑏1 = 𝑑3 + 𝑑4 − (ℎ1 + ℎ7),
2 = ℎ1(ℎ3 + ℎ7) + ℎ2ℎ5 − ℎ3ℎ7 + (𝑑4 − 2ℎ1 + 2ℎ3 − 2ℎ7)𝑑3,
3 = 𝑑3(ℎ5ℎ2 − ℎ3ℎ7 + ℎ1ℎ7 − ℎ1ℎ3) + ℎ3(ℎ1ℎ7 + ℎ2ℎ5) − 𝑑3(ℎ1ℎ3 − ℎ1ℎ7 +
𝑑4(ℎ1ℎ3 + ℎ7) − ℎ2ℎ5),
4 = 𝑑3ℎ3(ℎ2ℎ5 + ℎ1ℎ7) + 𝑑3(ℎ3(ℎ2ℎ5 − ℎ7ℎ1) − 𝑑4(ℎ2ℎ5 − ℎ3ℎ7 + ℎ1(ℎ7 −
ℎ3))) − ℎ4ℎ6𝛼𝐿𝛼𝑃 ,
𝑏5 = 𝛼𝐿𝛼𝑃 ℎ6ℎ4ℎ1 + ℎ3𝑑3𝑑4(ℎ2ℎ5 + ℎ1ℎ7).

The Routh–Hurwitz criteria for fifth-degree polynomials determines
the local stability of equilibrium points [38,39]. Therefore, if the
conditions stated in (19) are satisfied then equilibrium point 𝜉3 gains
stability.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑆1 = 𝑏1 > 0; 𝑏3 > 0; 𝑆2 = 𝑏1𝑏2 − 𝑏3 > 0;
𝑆3 = 𝑏1𝑏2𝑏3 − 𝑏4 − 𝑏21 − 𝑏

2
3 > 0;

𝑆4 = (𝑏3𝑏4 − 𝑏2𝑏5)(𝑏1𝑏2 − 𝑏3) − (𝑏1𝑏4 − 𝑏5)2 > 0;
𝑆5 = 𝑏5𝑆4 > 0

(19)

The coexistence equilibrium point 𝜉3 will exhibit local asymptotic
stability as a stable node if the conditions stated in (19) holds.

2.5. The global analysis of model equilibria

In this section we analyze the global behaviors of the model equi-
libria by using Lyapunov function.

2.5.1. Trivial equilibrium point 𝜉0

Theorem 5. To ensure global asymptotic stability of the equilibrium point
𝜉0, it is necessary and sufficient that 𝐶 = 𝐾𝐶 , ℛ∗ ≤ 1, and 𝑑1𝑑4𝜂𝜔 ≤
𝜓𝑞𝜔𝛼 .
5

𝐸

Proof.

0(𝑡) = 𝐶 +
(

𝑑4
𝑞𝜓

)

𝐸 +
(

𝑑1𝑑4
𝑞𝜓𝛼𝐸

)

𝐿 +
(

𝑑1𝑑2𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿

)

𝑃 +
(

𝑑1𝑑2𝑑3𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

)

𝐴.

(20)

The Lyapunov candidate function Eq. (20) is properly structured, con-
tinuous, and positive definite ∀ 𝐶, 𝐸, 𝐿, 𝑃 , and 𝐴. It is evident that,
0 perish at 𝜉0. Taking the derivatives of the Eq. (20) and plugging the
erivatives from the model system Eq. (1). we have,

′
0(𝑡) = 𝐶 ′ +

(

𝑑4
𝑞𝜓

)

𝐸′ +
(

𝑑1𝑑4
𝑞𝜓𝛼𝐸

)

𝐿′ +
(

𝑑1𝑑2𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿

)

𝑃 ′

+
(

𝑑1𝑑2𝑑3𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

)

𝐴′,

= 𝑟𝐶
(

1 − 𝐶
𝐾𝐶

)

− 𝜔𝐿𝐶 +
(

𝑑4
𝑞𝜓

)(

𝑞
(

1 − 𝐸
𝐾𝐸

)

𝜓𝐴 − 𝑑1𝐸
)

+
(

𝑑1𝑑4
𝑞𝜓𝛼𝐸

)(

𝛼𝐸

(

1 − 𝐿
𝐾𝐿

)

𝐸 + 𝜂𝜔𝐿𝐶 − 𝑑2𝐿
)

+
(

𝑑1𝑑2𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿

)

(

𝛼𝐿𝐿 − 𝑑3𝑃
)

+
𝑑1𝑑2𝑑3𝑑4𝑃
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

+
𝑑1𝑑2𝑑3𝑑24𝐴
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

.

= 𝑟𝐶
(

1 − 𝐶
𝐾𝐶

)

− 𝜔𝐿𝐶 +
(

𝑑4
𝑞𝜓

)(

𝑞
(

1 − 𝐸
𝐾𝐸

)

𝜓𝐴 − 𝑑1𝐸
)

+
(

𝑑1𝑑4
𝑞𝜓𝛼𝐸

)(

𝛼𝐸

(

1 − 𝐿
𝐾𝐿

)

𝐸 + 𝜂𝜔𝐿𝐶 − 𝑑2𝐿
)

+
(

𝑑1𝑑2𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿

)

(

𝛼𝐿𝐿 − 𝑑3𝑃
)

+
𝑑1𝑑2𝑑3𝑑4𝑃
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

+
𝑑1𝑑2𝑑3𝑑24𝐴
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

= −𝑑4
𝐸𝐴
𝐾𝐸

− 𝑑1𝑑2
𝐸𝐿
𝐾𝐿

−
𝑑1𝑑2𝑑3𝑑24
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

(

1 −
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃
𝑑1𝑑2𝑑3𝑑4

)

𝐴

− 𝜂𝜔
(

𝑞𝜓𝛼𝐸𝜔
𝑑1𝑑4𝜂𝜔

− 1
)

𝐿𝐶 + 𝑟𝐶
(

1 − 𝐶
𝐾𝐶

)

0(𝑡) = −𝑑4
𝐸𝐴
𝐾𝐸

− 𝑑1𝑑2
𝐸𝐿
𝐾𝐿

−
𝑑4
ℛ∗

(1 −ℛ∗)𝐴 − 𝜂𝜔
(

𝑞𝜓𝛼𝐸𝜔
𝑑1𝑑4𝜂𝜔

− 1
)

𝐿𝐶

+ 𝑟𝐶
(

1 − 𝐶
𝐾𝐶

)

.

(21)

Therefore, from Eq. (21), 0(𝑡) = 0 if and only if 𝐶 = 𝐾𝐶 , ℛ∗ = 1, and
1𝑑4𝜂𝜔 ≤ 𝑞𝜓𝛼𝐸𝜔. Then 0(𝑡) is negative definite if 𝐶 = 𝐾𝐶 , ℛ∗ ≤ 1,
nd 𝑑1𝑑4𝜂𝜔 ≤ 𝑞𝜓𝛼𝐸𝜔. □

.5.2. Equilibrium point 𝜉1
To check the global stability of this point we formulate good lya-

unov candidate that will be used to perform the analysis.

heorem 6. Pest free-equilibrium point 𝜉2 ensures global asymptotic stabil-
ty if (𝑖) ℛ∗ ≤ 1, (𝑖𝑖) 𝐶 < 𝐶∗, 𝑎𝑛𝑑 (𝑖𝑖𝑖) 𝜔𝑞𝜓𝛼𝐸𝐶∗ ≤

(

𝑑1𝑑4𝜂𝜔 + 𝜔𝑞𝜓𝛼𝐸𝐶
)

re true.

roof. We let the Lyapunov function described in Eq. (22)

1(𝑡) = 𝐶 − 𝐶∗ − 𝐶∗ ln
(

𝐶
𝐶∗

)

+
(

𝑑4
𝑞𝜓

)

𝐸 +
(

𝑑1𝑑4
𝑞𝜓𝛼𝐸

)

𝐿 +
(

𝑑1𝑑2𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿

)

𝑃

+
(

𝑑1𝑑2𝑑3𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

)

𝐴.

(22)

This is evident that lyapunov candidate function (22) is well defined,

continuous, and positive definite ∀ 𝐶, 𝐸, 𝐿, 𝑃 , and 𝐴. 1 perish at 𝜉1,
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Fig. 2. Illustrates non linear stability analysis of point 𝜉3 on 𝑃 –𝐶–𝐴 plane.

Consequently,  ′
1(𝑡) along the solutions of system (1) holds.

 ′
1(𝑡) ≤

(

1 −
𝐶∗
𝐶

)

𝐶 ′ +
(

𝑑4
𝑞𝜓

)

𝐸′ +
(

𝑑1𝑑4
𝑞𝜓𝛼𝐸

)

𝐿′ +
(

𝑑1𝑑2𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿

)

𝑃 ′

+
(

𝑑1𝑑2𝑑3𝑑4
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

)

𝐴′

= −𝑟𝐶∗

(

1 − 𝐶
𝐾𝐶

)(

1 − 𝐶
𝐶∗

)

− 𝑑4
𝐸𝐴
𝐾𝐸

− 𝑑1𝑑2
𝐸𝐿
𝐾𝐿

−
𝑑1𝑑2𝑑3𝑑24
𝑞𝜓𝛼𝐸𝛼𝐿𝛼𝑃

(1 −ℛ∗)𝐴

−
𝜔𝑞𝜓𝛼𝐸 + 𝑑1𝑑4𝜂𝜔

𝑞𝜓𝛼𝐸

(

1 −
𝜔𝑞𝜓𝛼𝐸𝐶∗

(𝑑1𝑑4𝜂𝜔 + 𝜔𝑞𝜓𝛼𝐸 )𝐶

)

.

This conclude that, 1 is negative definite if the conditions in Eq. (23)
are true.

ℛ∗ ≤ 1, 𝐶 < 𝐶∗ and 𝜔𝑞𝜓𝛼𝐸𝐶∗ ≤ (𝑑1𝑑4𝜂𝜔 + 𝜔𝑞𝜓𝛼𝐸 ). □ (23)

2.5.3. Co-existence equilibrium point 𝜉3
The stability of 𝜉3 was assessed by plotting three-dimensional gra-

phs. The figures presented in Figs. 2 and 3 demonstrate that the
trajectories of the system converge towards the equilibrium point 𝜉3
in the invariant region 𝛺. Therefore, it can be concluded that 𝜉3 is an
asymptotically stable point.

3. Global sensitivity analysis

In this section, we determine the model’s response to variations in
each parameter within an uncertainty range using the parameter base-
line values presented in Table 2. Utilizing Latin hypercube sampling
approach, we obtain the partial rank correlation coefficients (PRCC).
Based on the PRCC indices, we observe that the parameters 𝛼𝐸 , 𝛼𝐿,
𝜓 , and 𝛼𝑃 have strong negative correlations with cabbage biomass,
as indicated in Fig. 6. Conversely, parameter 𝜙 has a strong positive
correlation with cabbage biomass. Furthermore, the parameters 𝛼𝐸 ,
𝛼𝐿, and 𝛼𝑃 exhibit a strong positive correlation with the stages of
the diamondback moth (DBM), as shown in Figs. 4 and 5. Hence, to
enhance cabbage production, it is advisable to implement a control
strategy that primarily targets the management of the sensitive growth
parameters of DBM, namely 𝛼𝐸 , 𝛼𝐿, and 𝛼𝑃 . By decreasing the values
of these parameters, it becomes possible to suppress the population of
DBM within the cabbage biomass.
6

Table 2
Numerical values of the parameters.

Parameters Value Source

𝜆𝐿 0.1500 Faithpraise et al. [40].
𝜆𝑃 0.3000 Faithpraise et al. [40].
𝜆𝐸 0.3700 Faithpraise et al. [40]
𝛼−1𝐸 7 (2–9) days [37].
𝛼−1𝐿 14 (8–16) days [6,37].
𝛼−1𝑃 10 (5–15) days [6,37].
𝜆−1𝐴 18 (15–18) days [6,37].
𝐾𝐶 30 Leaves Plant−1 Tonnang et al. [9],Faithpraise et al. [40].
𝐾𝐸 106 Estimate.
𝐾𝐿 106 Estimate.
𝜂 0.02 days−1 Estimate.
𝜓 0.07 days−1 Estimate.
𝜔 6×10−6 days−1 Estimate.
𝜙 Varied
𝑞 160 [37].
𝑟 0.05 Faithpraise et al. [40].

4. Results and discussions

In this section, we perform simulations to study pest infestations as
described in the model system Eq. (1). The results depicted in Fig. 7
demonstrate the outbreak and the impact of the DBM on cabbage
biomass with initial values of 𝐸(0) = 1000, 𝐿(0) = 100, 𝑃 (0) = 100,
𝐴(0) = 1000, and parameter values in Table 2. We observed that the
cabbage biomass is declining due to the persistence of DBM in the
cabbage farm. The analytical results depicted in Fig. 8 demonstrate
the infestation of DBM in the cabbage biomass, with a threshold value
of ℛ∗ < 1. This indicates that after a period of 200 days, if a female
DBM does not produce additional offspring, the population of DBM will
eventually go extinct. Meanwhile, the cabbage population continues to
grow over time, reaching its expected carrying capacity of 30 leaves
per plant.

By setting the control parameter 𝜙 > 0.5, it ensures that ℛ∗ < 1.
For instance, in Fig. 8, when 𝜙 = 0.9, we obtain ℛ∗ = 0.3070, which
implies that an adult female moth is unable to produce more than
one offspring. Similarly, by setting the control parameters 𝜙 < 0.5, it
guarantees that ℛ∗ > 1. This indicates that the pest population persists
by producing more offspring within the cabbage biomass, and once
they reach the larval stage, they begin to attack and destroy the foliar
tissues of the cabbage plants. For instance, when we set 𝜙 = 0.45 and
𝜙 = 0.4, the corresponding threshold numbers become ℛ∗ = 1.4630 and
ℛ∗ = 6.7722, respectively.

5. Conclusion

In this paper, we have developed a deterministic mathematical
model to capture the infestation dynamics of Plutella xylostella (Di-
amondback Moth, DBM) in a cabbage farm. The main objective of
this study was to propose an intervention strategy that minimizes the
threshold number and controls the moth populations. Numerical simu-
lations were conducted to support the analytical results and address
the persistence of pests within the cabbage biomass. The numerical
findings, based on the system Eq. (1), indicate that when the threshold
number ℛ∗ < 1, the pest population in the cabbage field decreases
significantly, leading to an increase in cabbage production up to its
carrying capacity of 30 leaves per plant. The numerical simulations de-
picted in Fig. 7 demonstrate the detrimental impact of DBM outbreaks
on the cabbage biomass, illustrating how the moth persists and destroys
the cabbage plants.

To address and mitigate DBM outbreaks, we propose implementing
intervention strategies as outlined in Fig. 8. Specifically, in Fig. 8(a),
it is evident that increasing the value of 𝜙 results in an increase in
cabbage biomass up to its carrying capacity, which is 𝐾𝐶 = 30 leaves
per plant. This suggests that by adjusting the control parameter 𝜙, we
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Fig. 3. Illustrates non linear stability analysis of point 𝜉3 on 𝐸–𝐿–𝐴 plane.
Fig. 4. Global sensitivity analysis of parameters with respect to larvae stage.

Fig. 5. Global sensitivity analysis of parameters with respect to adult moth stage.
7

Fig. 6. Demonstrates the variation of PRCC indices of parameters with respect to
Cabbage biomass.

can effectively manage and enhance cabbage production while mini-
mizing the impact of DBM infestations. Additionally, we suggest the
application of selected insecticides that have minimal negative impact
on ecosystems and beneficial insects, as this can effectively reduce the
pest population in the cabbage farm. Overall, this study contributes
to our understanding of the infestation dynamics of DBM in cabbage
farms and provides insights into potential intervention strategies for
managing and minimizing pest populations.

Future research directions: We plan to investigate the effects of
seasonality on the dynamics of Plutella xylostella on cabbages. The
data obtained from the literature was not sufficient for calibrating and
validating the model. We will perform these tasks once we have access
to real data in the future. Furthermore, the developed deterministic
differential model will be used to solve the fractional order delayed
differential models [41,42], delayed dynamical models [43,44], and
nonlinear systems of differential equations [45,46].
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Fig. 7. Illustrates the impact of larger invasion of DBM populations in a cabbage biomass with varying values of 𝜙.

Fig. 8. Demonstrates the impact of a DBM outbreak in a cabbage biomass with a small initial pest population, considering varying values of the intervention strategy.
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