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Abstract

Access to quality drinking water is an essential human right and a fundamental aspect of human
dignity, yet a challenge to many in developing countries. Over 2 billion people worldwide lack access
to quality drinking water due to microbial contamination, among other factors. Silver-doped zinc
oxide impregnated activated carbon nanocomposites, Ag-ZnO-AC NCs, a strong antimicrobial agent
have been used at point-of-use to treat water treatment. Green synthesis of Ag-ZnO-AC NCs has
played a vital role since it leads to the acquisition of non-toxic nanocomposites compared to chemical
synthesis. In this study, Ag-ZnO-AC NCs were green-synthesized using Launaea cornuta leaf extract as
asource of reducing and capping agents in place of synthetic chemicals. Antioxidants from Launaea
cornuta (Wild Lettuce) leaves were extracted using 0, 50, and 100% EtOH solvents with different
volumes and extraction circles. The highest phenolic (11044 + 63 jug) and antioxidant (44112 £+

894 jug) contents were extracted using 50% EtOH and 20 ml of extract solvent with p < 0.05. The SEM
and TEM images of the synthesized Ag-ZnO-AC NCs show the formation of highly porous AC with
sheet-like structures and successful Ag-ZnO NCs impregnation within the pores and on the surface of
the AC. Based on the inhibition zone, the antimicrobial activity of the Ag-ZnO AC NCs had significant
results with 14.00 £ 0.37 for E. coliand 17.33 4 0.36 mm for S. aureus, p < 0.05. These results confirm
the significance of Launaea cornuta (Wild Lettuce) as a source of antioxidants that can be used as
reducing and capping agents to synthesize Ag-ZnO-AC NCs.

Introduction

Access to quality drinking water is an essential human right and a fundamental aspect of human dignity as
acknowledged by Sustainable Development Goal 6 [1]. Despite its importance more than 2 billion people
worldwide lack access to quality drinking water [2]. Microbial contamination is one of the causes of water quality
deterioration worldwide and is the largest cause of waterborne diseases and deaths [3]. For instance, amoeba,
typhoid and cholera are waterborne diseases reported to be associated with consumption of contaminated
drinking water causing approximately 485,000 deaths per annum [4].

Water quality is related to natural and anthropogenic factors such as water-rock interactions, hydrology,
land cover, land use, climate and human operational factors [5-8]. To ensure access to quality water it is
necessary to monitor the quality of water from the sources to the consumer level. Point-of-use water treatment
(POUWT) systems such as membrane and ceramic water filters are alternatives to quality drinking water access
atthe consumer level [9, 10]. POUWT systems are packed with antimicrobial agents like zinc oxide (ZnO) to
achieve microbial disinfection during water treatment [11, 12].

ZnO is a non-toxic, eco-friendly semiconductor widely used as an antimicrobial material due to its wide
band gap (3.36 eV) and high exciton binding energy (60 meV) [13, 14]. In the presence of sunlight or UV ZnO

© 2024 The Author(s). Published by IOP Publishing Ltd
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produces positive holes (h+) and electrons (e-) referred to as electron—hole pairs which are responsible for the
generation of reactive oxygen species (ROS). The ROS can introduce oxidative stress in bacteria cells leading to
their death [15]. The electron—hole pairs of ZnO have a rapid recombination rate as they favour light absorption
in the UV over the visible region, leaving the visible light unutilised [ 16]. Doping of silver (Ag) in the ZnO lattice
has promoted the use of light in the visible region and prolonged the recombination time of the electron—hole
pairs [17]. Asamoah ef al doped Ag into ZnO resulting in the reduction of the energy band gap from 3.37 to 2.88
eV. The doped ZnO improved its ROS generation and antimicrobial activity [18, 19]. Doping of Ag into ZnO
brings about a stronger electron storage capacity because as a semiconductor ZnO can easily inherit electrons to
Ag-NPs therefore sustainable formation of ROS [20, 21].

Despite, the improved antimicrobial efficiency of silver-doped zinc oxide nanocomposites (Ag-ZnO NCs) in
water treatment its use should consider the exposure limit to prevent any effect brought by excess uptake [22].
For such reasons, Ag-ZnO NCs have been impregnated into porous materials such as activated carbon (AC) and
graphene [23-26]. Activated carbon introduces a controlled release of metallic ions, allowing for a predictable,
stable, and sustainable water treatment process [13, 27]. It enhances the efficiency of water purification by a
synergetic combination of the AC adsorption and the Ag-ZnO NCs antimicrobial activity [27, 28].

Studies have documented the synthesis of silver zinc oxide nanocomposites impregnated activated carbon
(Ag-ZnO-AC NCs) using chemical methods with promising antimicrobial activities [27, 29]. Chemical synthesis
uses toxic and carcinogenic chemicals that produce contaminated nanocomposites not fit for human
consumption [30, 31] To the best of our knowledge, there is limited research and report on the green synthesis of
Ag-ZnO-AC NCs. Green synthesis brings about toxic-free and cleaner composites that can be trusted in uses
related to human consumption such as water treatment. Plant extracts especially from medicinal plants have
been used in green synthesis since they are good sources of secondary metabolites [32—35]. The metabolites such
as flavonoids, alkaloids, tannins, proteins, polyphenols, terpenoids, and saponins act as hydrolyzing/reducing
agents and capping agents in the synthesis of nanoparticles in place of synthetic chemicals [36-39].

This research explores the novel potential of Launaea cornuta (Wild Lettuce) leaf extract in green synthesis of
Ag-ZnO-ACNCs from nitrates of Ag and Zinc. The antimicrobial efficiency of the synthesized Ag-ZnO-ACNCs
was tested against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria through a
well-diffusion method. Furthermore, the study explores the effectiveness of solvent type in the total phenollic
and antioxidant contents extraction of secondary metabolites.

Materials and methods

Materials

Analytical quality AgNO3 (99.99%), Zn(NO3), (99.99%), NaOH (98%), Ethanol (99.5%), KOH (98%), Folin,
Na,CO3(99.5%), Gallic acid(97.5%), ABTS solution, and Trolox (97%) were purchased from Aldi-rich and
used without modification. Water hyacinth was collected from Lake Victoria, Mwanza Tanzania. Launaea
cornutaleaves were harvested from the fields of the Nelson Mandela African Institution of Science and
Technology, Nambala village, Arusha region, Tanzania, at coordinates 3°23/58”S 36°47’48"E. The plant was
properly identified and stored at the National Herbarium of Tanzania (NHT) under the Tanzania Plant Health
and Pesticides Authority (TPHPA) with the reference number KA51,/2023 [40]. All procedures for collecting
plant materials followed the relevant institutional, national, and international regulations and guidelines.

Methods

Launaea cornuta leaf extract preparation

Launaea cornutaleaves were thoroughly washed using tap water followed by double distilled water three times.
The leaves were then dried using a freeze drier for 48 h before grounding using an electric mortar to a fine
powder. Launaea cornuta leaf extract was obtained using ultrasound-assisted solid-liquid extraction (USAE).
0.5 g of the fine powder was added into a 50 ml Eppendorf tube followed by 5 ml of milli-aqua water. The
mixture was hand mixed gently for a minute before immersing in an ultrasonic bath (frequency 35 kHz; power
60—120 W; Sonorex TK 52; Bandelin electronic, Berlin, Germany) for 10 min at 30 °C. The samples were
centrifuged at 7830 rpm for 5 min and the supernatant was collected with a Pasteur pipette and filtered using No.
1 Whatman filter paper using a vacuum filter.

The extraction was repeated using different conditions to create the optimum extraction conditions. The
extract volumes were varied by 5, 10 and 20 ml for each extraction solvent used. Extraction solvents based on the
water-ethanol ratio were used to vary the polarity of the solvent. In this case, 100% water (0%EtOH), 50% water
(50%EtOH) and 100% ethanol (100%EtOH) were used as solvents. The extraction cycles used were 2, 3, or 4 for
asample. The extraction process was done in triplicates, n = 3, to allow reproducibility.
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Figure 1. Schematic diagram indicating a process of synthesizing Ag-ZnO NCs.

The alcoholic supernatants were evaporated to dryness using a rotary evaporator while the water
supernatants were dried using a freeze drier. The mass of each dried sample was recorded. Milli aqua water was
used to dilute the dry samples into a common concentration of 10 mg mL ™. It was also used to calculate the total
phenolic and antioxidant contents extracted from the dry samples of Launaea cornuta. The solutions were
centrifuged to remove suspended solids before storing them at 4 °C ready for phytochemical analysis.

Total phenolic content analysis

The total phenolic content of the Launaea cornuta leaf extracts was determined by the Folin-Ciocalteu reagent
method [41]. In this analysis, 400 pl of milli aqua water was added into a 1 ml cuvette followed by 80 ul Launaea
cornuta leaf extracts, 40 pl folin, and lastly 480 pl 10.75% Na,COs. The resulting mixture was incubated at room
temperature for 30 min before absorbance reading by a mass spectrometer at 765 nm. Gallic acid was used as
standard while water was used as blank in this experiment. All the tests were performed in triplicates to ensure
accuracy (n =9). Total phenolic content was determined from the standard curve equation and expressed as
gallicacid equivalent (GAE) expressed in mg of extracted compound over g of dry leaf sample.

Total antioxidant content analysis

The free radical scavenging activity (antioxidant activity) of Launaea cornuta leaf extracts (DPPH) was
determined as described by Guzzetti et al [42]. 50 pl of 1 mg ml ™" Launaea cornuta leaf extracts was added into a
1 ml cuvette followed by 950 pl ABTS. The sample was well mixed and incubated for 6 min before reading the
absorbance using a spectrophotometer at 734 nm wavelength. Water was used as blank while Trolox was used as
astandard solution in this experiment. The total antioxidant content is expressed as mg TE (Trolox Equivalent)
per gram of leaves and ABTS ™ inhibition percentage.

Synthesis of Ag-ZnO NCs

Synthesis of Ag-ZnO NCs was adopted from Makauki ef al using optimum conditions reported in that study
[40]. As presented in figure 1, in a 250 mm conical flask, 92 ml of Launaea cornutaleaf extract was added and
introduced to stirring on a hot plate. 8 ml of 0.1 M AgNO3 was added dropwise to the leaf extract under vigorous
stirring to allow maximum ionic interaction. The reaction proceeded for 15 min before adding 2.97 g of
Zn(NOj3), at pH 7. The reaction ran for 2 h ata 70 °C temperature. The resulting mixture was centrifuged at
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4000 rpm for 10 min to extract the nanocomposite paste. The solid residue was collected and washed twice using
50% ethanol followed by drying at 100 °C for 24 h. The dry sample was calcined at 650 °C for 3 h using a box
furnace.

Synthesis of AC

AC was synthesized from water hyacinth following a route reported by Makauki et al with some modifications
[43]. Water hyacinth was collected from Lake Victoria, and washed thoroughly with tap water after removing the
roots. The plant material was washed with distilled water and dried in a shed for 2 weeks. The dried precursor
was fragmented into small pieces and powdered using an electric grinder. 5 g of the powdered precursor was
carbonized in a carbolite horizontal tubular furnace (CTF 12/65/550) under N, inert atmosphere at 650, 750,
and 850 °C for 1 h with a heating ramp rate of 10 °C per min. The carbon obtained was activated using KOH in a
1:1 mass ratio at 700 °C for 30 min in the carbolite tubular furnace under N, inert atmosphere. The resulting
activated carbon was washed using distilled water to a pH of 7. The AC was then dried at 100 °C in an oven for

12 h. The dry samples were stored in tight dry containers ready for the impregnation with Ag-ZnO NCs.

Impregnation of Ag-ZnO NCs into AC

Ag-ZnO-AC NCs were prepared by mixing 1 g of Ag-ZnO NCs and 1 gof AC in 10 ml of milli aqua water. The
mixture was vigorously stirred for 1 h followed by prob sonication for another 1 h. The sample was then dried
and kept tight for characterization and antimicrobial testing. The prepared samples were named C-T, AC-T, and
Ag-ZnO-AC-T where C, AC, Ag-ZnO-AC, and T stand for carbon, activated carbon, silver zinc oxide
impregnated activated carbon, and carbonization temperature respectively.

Characterization

The leaf extract functional groups were identified using attenuated total reflection-Fourier transform infrared
(ATR-FTIR) spectroscopy (Bruker Optic GmbH 2011, alpha model, Laser class 1). The crystalline nature of
synthesized nanomaterials was analyzed at Carleton University using Rigaku XtaLAB Mini II Single-Crystal
x-ray Diffractometer (427 SC) equipped with analyzer scanning mode of CuKa wavelength () = 1.540598 A, 45
kV-30 mA and 26/6 with the spectrum range between 10 and 90 degrees and 0.026 scan step size. The
morphologies of the synthesized nanocomposites were characterized by Field emission scanning electron
microscopy (FE-SEM)-EDS using Tescan Vega-II XMU Scanning Electron Microscope. The cross-sectional
morphology (TEM) of the nanocomposites and Selected area elemental diffraction (SAED) was determined by
high-resolution transmission electron microscopy—HR-TEM (FEI Tecnai G2 F20 Transmission Electron
Microscope).

Microbial assay of the synthesized nanocomposites

The antimicrobial solution was prepared by adding 10, 17, and 34 mg of Ag-ZnO-AC NCs to 20, 34, and 68 ul of
milli aqua water. The mixture was vortexed for 2 min for proper mixing. Gram-negative (Escherichia coli-ATCC
25922) and gram-positive (Staphylococcus aureus- ATCC 25923) bacterial strains with a spectrophotometric
absorbance of 0.1 - 0.01 were used to assess the antimicrobial efficacy through well diffusion method [44].
Sterilised nutrient agar media was prepared by mixing 5.0 g peptone, 5.0 g NaCl, 1.5 g beef extract, 1.5 g yeast
extract, and 15.0 g agar in 1 L milli aqua water. The mixture was autoclaved at 100 °C for 20 min. After cooling,
50 ml of the nutrient agar was poured into an agar plate followed by 1 ml of 0.1 + 0.01 desired bacteria strain, the
two were well mixed. After solidification, 3 holes of 6 mm width were formed in the agar using the back of a
pipette tip and the prepared nanocomposite mixture was added into the holes using pipette. The inoculated discs
were then incubated for 24 h at 37 °C and the zone of inhibition (ZOI) was measured in millimetres of diameter.
Agar plates with bacteria only (without Ag-ZnO-AC NCs) were used as positive control while agar plates with
nanocomposites only (without bacteria) were used as negative control.

Results and discussion

Total phenolic content and antioxidant analysis

The calibration curve of the isolated gallic acid was established using a spectrophotometer at 765 nm. The
calibration curve equation was y = 0.0078x-0.035 and R* = 0.9991 as illustrated in the supplementary
information S1. The total phenolic content of Launaea cornuta leaf extracts was expressed as gallic acid
equivalent ug(GAE)/g of solid sample from the established gallic acid standard curve. Figure 2(a) and table 1
demonstrate the effect of extraction volume and cycles on the amount of phenolic content. As the extraction
volume and cycles increase the total phenolic content extraction from Launaea cornuta leaves also increases with
significance, p < 0.05. When 5, 10, and 20 ml of extraction solvent were used, the higher total phenolic content

4
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Figure 2. Total phenolic (a) and antioxidant contents (b) of Launaea cornutaleaf extract.

Table 1. Percentage of total phenolic and antioxidant content of Launaea

cornuta leaf extract.
Solvent Phenolic con- Antioxidants con-

% EtOH volume (ml) tent (%/g) tent (%/g)
0 5 1.072£0.014 1.281 £ 0.004
0 10 1.133 £0.004 1.954 £0.018
0 20 1.223 £0.007 2.237£0.007
50 5 1.223£0.014 3.952+0.058
50 10 1.921 £0.049 7.621+0.193
50 20 2.152£0.032 8.598+£0.173
100 5 0.662 £ 0.020 1.599 £0.005
100 10 0.704 £0.016 2.392+£0.052
100 20 1.080 £0.033 3.127+£0.016

was obtained with 20 ml of solvent (p < 0.05). High phenolic content was also observed with 4 extraction circles
compared to 2 and 3 cycles as indicated in figure 3. Extraction solvent plays a vital role in optimal extraction
since it involves polarity. In this regard 100%, 50%, and 0% EtOH were used as extraction solvents. Total
phenolic contents were maximumly extracted using 50% EtOH solvent with the order of 50% EtOH > 0%
EtOH > 100% EtOH, p < 0.05, as reported elsewhere [41]. Water and ethanol have different polarities which
might have influenced the solubility of the antioxidants present in Launaea cornuta leaves when used together.
The optimal extractions were 50% EtOH, 20 ml solvent, and three extraction cycles with the total phenolic
content reaching 11044.33 4 62.51 pg GAE/g also illustrated in the supplementary information S3.

The antioxidant scavenging activity of Launaea cornutaleaf extract in different conditions was determined
using ABTS™ with the calibration curve equation y = 0.0013x-0.0069 and R* = 0.9996 as illustrated in the
supplementary information S2. The ABTS™ inhibitory activity (%) of the extract samples followed the order
50% EtOH > 0% EtOH > 100% EtOH as illustrated in table 1. An increase in extraction cycles and volume
increased the ABTS™ inhibiting effect of the samples, figure 2(b). The highest inhibition was observed when
20 ml of 50% EtOH was used in three extraction cycles in which the inhibition was 8.598 + 0.173% (44174 + 94
pg TE per gram) also illustrated in the supplementary information S4. The results had a significant p-value of less
than 0.05 for all conditions showcasing its significance. The higher liquid-to-solids ratio increases the
dissolution of the metabolites to the solvent and faster extraction rates [45].

ART-FTIR studies

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) studies confirmed the presence of secondary
metabolites in Launeae cornuta leaf extract as indicated in figure 4. Flavonoids, alkaloids tannins, and saponins
are confirmed to be present in the leaf extract. The 1315 cm ™' band indicates C-C starching and the 3292 cm ™"
broad strong band is O-H and N-H stretching vibration indicating the presence of flavonoids and tannins
[46—48]. The 635 cm ™' band represent the N-H stretching. The 1006 cm ™' bands represent the C-N stretching
of the aliphatic amines. The 1315 cm ™' band represent the C-N stretching of the aromatic amines [49]. The N-H
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Figure 3. Effect of the extraction cycle on total phenolic and antioxidant contents of Launaea cornuta leaf extract.
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Figure 4. FTIR patterns of Launaea cornuta leaf extract.

and C-N stretching vibrations confirm the presence of alkaloids in the leaf extract [50]. Saponins are presented
by C-H and C=C stretching vibrations which are verified by the presence 0f 2922 and 1612 cm ™' bands.
Alkaloids have reducing power they reduce the metallic ions to metallic atoms leading to the formation of the
nanoparticles. The flavonoids, saponins, and tannins are natural surfactants. They regulate the size of the
nanoparticles and prevent agglomeration through steric hindrance around the nanoparticles [51].

X-ray diffraction (XRD)
The crystalline nature and particle size of synthesized nanomaterials were analysed using x-ray diffraction
(XRD). The XRD pattern of C-850 indicates the presence of peaks at 29.87 and 40.51; AC-850 shows peaks at 29.
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Figure 5. XRD patterns of (a) carbon, activated carbon, and impregnated activated carbon (b) impregnated activated carbon at
different carbonation temperatures.

34 and 43.15. The two peaks in C-850 and AC-850 correspond to the planes 002 and 10 of graphitic carbon
diffraction according to diffraction card JCPDS no. 75-1621 [52]. The peaks displayed around 23 degrees
explain the random aromatic carbon sheets confirming the formation of sheet-structured carbon [53]. As
illustrated in figure 5(a), More peaks are observed in the carbon matrix indicating the presence of macro- and
micro-elements such as manganese, calcium, and silicon present in the plant matrix as reported elsewhere and
proved by the EDS graphs of the same sample [54, 55]. The peak displayed at 28.3 degrees corresponds to SiO,
[56]. The depicted pattern of Ag-ZnO-AC-850 in figure 5(a) is for Ag-ZnO AC NCs. It reveals four prominent
peaks at 20 values around 38.10, 44.28, and 77.38 degrees, corresponding to the crystal planes of (111), (200),
and (311) [57]. These peaks affirm the face-centred-cubic (fcc) crystalline nature of the AgNPs, with lattice
parametersa =b = c=4.088 A, asevidenced by a comparison with the silver standard powder diffraction card,
JCPDS, file No. 04-0783 [58, 59]. Diffraction peaks at 20 values 31.74, 34.38, 36.18,47.42, 56.48, 62.80, 67.84,
and 68.24 degrees, correspond to the crystal planes (100), (002), (101), (102), (110), (103), (112), and (201) of
ZnO marching the ZnO standard powder diffraction card JCPDS, card no. 36-1451, affirming the presence of
ZnO NPs in the nanocomposite matrix [60]. This pattern suggests the typical hexagonal wurtzite structure ZnO
in space group P 63 mc as reported elsewhere [40]. These results confirm the successful impregnation of Ag-ZnO
in the activated carbon matrix. Figure 5(b) indicates XRD patterns of the Ag-ZnO-AC at different carbonation
temperatures. There is no significant shift of the peaks in the sample patterns since the same Ag-ZnO was
impregnated in the AC matrix. All the samples indicated the presence of Ag-ZnO NPs.
The average particle of the synthesized Ag-ZnO-AC samples was calculated using the Debye—Scherrer

equation below where, K is the Scherrer constant (0.94), A is the specific wavelength of the x-ray used which is
0.154 nm, [is the full width at half maxima, € is the diffraction Bragg angle and D is the average crystallite

size in nm.

KX )

D= —
B9 cos 0

The average particle size for Ag-ZnO-AC-650, I Ag-ZnO-AC-750 and Ag-ZnO-AC-850 was 50.87, 44.35 and
40.22 nm respectively. The particle sizes show Ag-ZnO NCs domination as observed in the patterns in

figure 5(b). The crystalline size of the Ag-ZnO-AC NCs displayed an increase compared to the size of the same
material [40]. This is believed to be caused by the intra-granular coupling between the metallic composite and
the activated carbon [27]. The XRD patterns of the AC-650, AC-750, AC-850, C-750 and C-850 indicated
smaller particle size compared to the Ag-ZnO-AC as a result of the existence of the microelements present in the
water hyacinth plant matrix [54].

Field emission scanning electron microscopy (FE-SEM)

The FE-SEM images of water hyacinth AC project complex irregular sheet-like morphologies as presented in
figure 6. The complexity might be contributed by the aggregation of mineral compounds in the plant matrix
[61]. Figures 6(a)—(c) show the effect of carbonation temperature on the particle size of the carbon materials. The
fragmentation on the C increases as the temperature from 650 to 850 °C. An increase in carbonation
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Figure 6. SEM images of (a) C-650 (b) C-750 (c) C-850 (d) Ag-ZnO-AC-650.

temperature increases the rate of organic matter dehydration, decomposition, and volatilization from the plant
biomass therefore, there is a widening of the biochar micropores [54]. These pores provide more surface area for
the attachment of the Ag-ZnO NCs. Figure 6(d) indicates almost a uniform distribution of the Ag-ZnO NCs in
the activated carbon matrix represented by the brighter particles. Activated carbon not only supported the
attachment of the NCs but also provided controlled release of the NCs and adsorption during the matrix
application.

The selected area electron diffraction (SAED) pattern of the Ag-ZnO-AC in supplementary information
S5(a-b) indicates the presence of both Agand ZnO as elaborated by d-spacing values. The d-spacing 2.347A
corresponds to the crystal planes of (111) which confirms the face-centred-cubic (fcc) crystalline nature of the
AgNPs [59]. The d-spacing 2.82A corresponds to the crystal planes 100 of ZnO confirming the presence of ZnO
NPs in the nanocomposite matrix [60]. Figures 7(a)—(e) is the selected area electron mapping which indicates the
presence of Ag, Zn, O, and C. EDS spectra figure 7(f) provides more evidence as it shows the presence and
distribution of Ag, Zn, O, and C in the activated carbon matrix evidencing a successful impregnation of Ag-ZnO
in the AC. AC controls the Ag-ZnO agglomeration by improving the nanoparticles distribution on its surface.

High-resolution transmission electron microscopy (HR-TEM)

Figure 8 represents the TEM images of AC and Ag-ZnO-AC. The TEM image of the un-impregnated AC

figure 8(a) displays sheetlike structures corresponding to the results presented in XRD and SEM images.

Figure 8(b) represents Ag-ZnO-AC indicating an introduction of spherical nanoparticles in the AC sheets. These
spherical structures represent the Ag-ZnO NCs impregnated in the AC matrix. The size of these nanoparticles as
determined by the TEM machine is between 16-21 nm [40]. It can be seen clearly that the Ag-ZnO NCs are
integrated into the AC sheets suggesting the controlled integration between AC and Ag-ZnO. The Ag-ZnO NCs
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Figure 7. (a) Electron mapping of Ag-ZnO-AC-850 showing the presence of (b) Ag, (¢) Zn, (d) O and (e) carbon. (f) Represents the
energy-dispersive x-ray spectroscopy (EDS) pattern of Ag-ZnO-AC-850.
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occupied the carbon pores created during activation. The TEM-EDX in figure 9(a) indicates the presence of C as
the main component (50.8%) followed by O, K, P, Mg, and Siin order of decreased occurrence. There was also a
trace occurrence of Cl. These elements are part of the plant matrix as reported by Masto et al in biochar prepared

9




10P Publishing

Nano Express 5 (2024) 045003 E Makauki et al
Table 2. The microbial inhibition of the synthesized Ag-ZnO ACNCs on E. coliand S. aureus.
E. coli ZOI (mm) S. aureus ZOI (mm)

Sample
Mass (mg) 10 17 34 10 17 34
Ag-ZnO-AC-65 11.50 +0.22 12.33+0.17 13.334+0.21 13.83 +0.31 15.50 +0.22 16.17 +0.31
Ag-ZnO-AC-75 11.924+0.27 12.50+0.22 13.67 +£0.33 14.17 +0.31 16.00 +0.26 16.50 +0.43
Ag-ZnO-AC-85 12.174+0.21 12.83+0.17 14.00 +0.37 14.83 £0.31 16.00 +0.26 17.33+£0.36
Table 3. Studies with antimicrobial efficacy of Ag-ZnO doped AC and graphene against E. coliand S. aureus.
Composite Synthesis method Concentration/mass Bacterial type Inhibition/disinfection References
Ag-ZnO-AC Green 34 mg S. aureus 17.33 £0.36 mm This study

E. coli 14.00 £+ 0.37 mm
Ag/Zn0O-AC Chemical 1000 pg S. aureus 10 mm [27]

E. coli 6 mm
Ag/ZnO/AC Green 0.12g S. aureus 8-12mm [65]

E. coli 6-8 mm
Ag@ZnO-ch NCs Chemical precipitation 400 pugml ™! S. aureus 14.67 £ 0.58 mm [66]

E. coli 9.33 £0.58 mm
ZnAgO/GO Chemical 100 pl S. aureus 10.73 £0.35mm [20]

E. coli 12.44+0.33 mm

using water hyacinth [54]. Figure 9(b) indicates the presence of Zn and Ag as a result of impregnating Ag-ZnO
into the AC matrix.

Microbial assay

The nanocomposite control confirmed no growth of either of the bacterial strains while the bacterial control
shows bacterial growth as indicated in the supplementary information S6. This provides a background that, the
microbial inhibition has occurred because of the inhibition activity of the nanocomposites synthesized and used
in this study. Table 2 demonstrates excellent antimicrobial activities by the Ag-ZnO-AC NCs. The zone of
inhibition (ZOI) for Ag-ZnO-AC-650, Ag-ZnO-AC-750, and Ag-ZnO-AC-850 was 13.33 +0.21, 13.67 £ 0.33
and 14.00 4= 0.31 mm against E. coli, respectively. The inhibition against S. aureus for the same nanocomposites
was 16.17 +0.31, 16.50 + 0.43 and 17.33 4 0.36 mm, respectively. These results projected no significant
difference since the p > 0.05. The results suggest Ag-ZnO NCs are the main antimicrobial agent since the
increase of carbonation temperature seems to have little impact. The Ag/ZnO-AC NCs demonstrated stronger
antimicrobial activity against S. aureus than E. coli (p < 0.05). However, S. aureus bacteria have a thicker outer
wall than E. coli bacteria, the latter have a peptidoglycan-porin protein membrane composed of
lipopolysaccharides. This membrane creates a barrier to prevent antibiotics from penetrating the cell wall
making E. coli more resistant than S. aureus [62, 63].

Although there was no significant difference between the composites prepared with different carbonation
temperatures, Ag-ZnO-AC-850 has demonstrated a slightly higher microbial inhibition of 14.00 +0.31 and
17.33 +0.36 mm for E. coliand S. aureus, respectively. This might be caused by the sharp edges on the surface of
the AC samples which increases the material roughness and fragmentation as observed in the SEM images
(figure 6(¢)): the sharp edges cause cell walls to rupture and prick [64]. Different masses, 10, 17, and 34 mg were
also used to determine the effect of composite mass on microbial inhibition. The increase in mass increased the
inhibition of both bacterial strains with a p-value less than 0.05 (table 2). The mass increase causes an increase in
Ag'and Zn>" ions release which are responsible for microbial inhibition. It contributes to direct nanoparticle
attacks forming pits and deformity on the bacterial cells. Similar studies (table 3) reported successful
antimicrobial activity on gram-negative (E. coli) and gram-positive (S. aureus) bacteria. The present study has
shown strong antimicrobial activity affirming its promising application as an antimicrobial agent.

The aim of impregnating Ag-ZnO in AC was to reduce the use of the metallic NCs which can be harmful in
excess consumption but maintain the excellent antimicrobial activity of the resulting composite. In our previous
study, the microbial inhibition of 30 mg Ag-ZnO NCs was 18.17 £ 0.24 mm and 17.19 4 0.34 mm for E. coliand
S. aureus respectively [40]. In the current study, 34 mg of the Ag-ZnO-AC NCs were used reducing Ag-ZnO by
almost 50% since the Ag-ZnO: AC mixing ratio was 1:1. The microbial inhibition of Ag-ZnO-AC NCs was
14.00 +0.37 and 17.33 4= 0.36 mm for the E. coli and S. aureus respectively. The S. aureus inhibition was
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maintained while that of E. coli decreased somehow. Generally, the antimicrobial activity is maintained
therefore sustainable use of Ag-ZnO NCs.

Conclusion

Ag-ZnO-AC NCs have been green synthesized successfully using antioxidants extracted from Launaea cornuta
leaves. The plant extract demonstrated remarkable extraction of antioxidants when extracted by 50% ethanolic
solvent 8.598 + 0.173% (44174.19 £ 93.81 pgg™ ') with P < 0.05. The XRD results demonstrated successful
impregnation of Ag-ZnO into the AC matrix with an average particle size between 40.22 and 50.87 nm. The SEM
and TEM images show the formation of sheet-like AC with increased fragmentation on an increase in
carbonation temperature. The SEM and TEM images indicate the deposition of spherical crystalline Ag-ZnO
into the AC. The antimicrobial activity of the Ag-ZnO-AC NCs has showcased significant results on gram-
negative (E. coli) and gram-positive (S. aureus) bacteria with a maximum inhibition of 14.00 £ 0.37 for E. coli
and 17.33 +0.36 mm for S. aureus (P < 0.05). These results verify the presence of antioxidants in Launaea
cornuta and their use in the synthesis of Ag-ZnO-AC NCs with a promising use in microbial inhibition on water
treatment.
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