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1 

Ecological Consequences of Antibiotics Pollution in Sub-Saharan 1 

Africa: Understanding Sources, Pathways, and Potential 2 

Implications 3 

Abstract 4 

In Sub-Saharan Africa (SSA), the increasing use of antibiotics in human and veterinary 5 

medicine, combined with inadequate waste and water management systems, has intensified the 6 

problem of antibiotic pollution. Untreated or partially treated wastewater from industries, 7 

agricultural runoff, residential areas, and healthcare facilities is frequently discharged into the 8 

environment, often used for irrigation, contributing to antibiotic accumulation, the spread of 9 

resistance genes, and the rise of antibiotic resistance, posing serious threats to public health 10 

and environmental sustainability. The region's climatic conditions favour the survival and 11 

proliferation of microbial communities, including pathogens. Additionally, the high prevalence 12 

of infectious diseases such as HIV/AIDS, tuberculosis, and malaria, which often necessitate 13 

antibiotic use, further amplifies the issue. Systemic challenges, including poor waste 14 

management, inadequate or absent wastewater treatment infrastructure, weak regulatory 15 

enforcement, and the over-the-counter sale of antibiotics, exacerbate the crisis. Limited 16 

healthcare access often results in self-medication and improper antibiotic use, accelerating 17 

resistance spread. Evidence shows antibiotics in surface water, groundwater, effluents, food 18 

crops, environmental samples, and aquatic organisms, indicating their potential circulation 19 

through the food chain. However, a lack of comprehensive data on antibiotic pollution and its 20 

impacts on aquatic ecosystems in SSA hampers a thorough understanding of its scope and long-21 

term effects. Addressing this crisis requires identifying contamination hotspots, evaluating 22 

ecological impacts, and establishing robust, region-specific regulatory frameworks to ensure 23 

environmental and public health safety 24 

Keywords: Antibiotics; Ecosystem health; Food chain; Contaminants of emerging concerns; 25 

Sub-Saharan Africa (SSA) 26 

 27 

 28 

 29 

 30 
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The use of antibiotics for medical treatments dates to ancient times. Initially, humans relied on 32 

extracts from medicinal plants. However, as populations grew, plant extracts alone became 33 

insufficient to meet the increasing demand. This led to the widespread use of synthetic and 34 

semi-synthetic drugs including antibiotics in treating humans, animals, and wildlife, as well as 35 

in agriculture. These substances, along with their metabolites and transformation products, 36 

often end up in sewage systems through various pathways. Urban growth is characterized by 37 

increased human activities, industrialization, and changes in lifestyle. Increased anthropogenic 38 

activities leading to the generation of toxic pollutants such as antibiotics, their metabolites, and 39 

transformational products. Antibiotics are frequently produced by soil microorganisms and are 40 

most likely a means for organisms in a complex environment, such as soil, to control the growth 41 

of competing microorganisms (Cycon et al., 2019; Waksman, 1947). Modern medicine has 42 

been transformed by antibiotics, which are essential for treating bacterial infections and 43 

enhancing both human and other animal health. However, the widespread and indiscriminate 44 

use has resulted in an emerging environmental concern of antibiotics pollution (Hossein et al., 45 

2018; Hossein et al., 2022; Makaye et al., 2022; Makokola et al., 2019; H. Miraji et al., 2016; 46 

Miraji et al., 2021; Ripanda & Miraji, 2022; A. S. Ripanda et al., 2023). Figure 1, indicates that 47 

generally research on antimicrobial pollution are increasing both in SSA and globally, with few 48 

studies in Africa.  49 

 50 

Figure 1: The number of absolute and cumulative publications on antibiotics pollution 51 

(Source: Scopus data base)  52 
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The data on co-authorship representation of African countries with the most publications 53 

between 2000 and 2025 provides valuable insights into the antimicrobial research landscape. 54 

This analysis was conducted by filtering affiliations to include only those from African 55 

countries, which means that while non-African countries like Australia and Canada appear in 56 

the data, they are represented solely through their collaborative contributions rather than as 57 

primary authors. Further results, indicates Nigeria stands out as the leading contributor, with 58 

total of 644 documents and 9,969 citations. This output not only reflects Nigeria's growing 59 

research capacity but also its impact on the global academic community. South Africa follows 60 

closely, producing 753 documents and garnering 20,037 citations, further solidifying its 61 

position as a significant player in scholarly research within Africa. Egypt also emerges as a 62 

prominent contributor, with 994 documents and 18,829 citations. This indicates a robust 63 

research environment that fosters research output and collaboration. Notably, both Ethiopia 64 

and Kenya are making strides in research, with Ethiopia contributing 270 documents and 4,611 65 

citations, while Kenya has 179 documents with 4,798 citations. These figures highlight the 66 

increasing research capabilities in East Africa, suggesting that these nations are becoming vital 67 

contributors to the research discourse, Figure 2. 68 

The concept of collaboration is illustrated through the metric of total link strength, which 69 

reflects the interconnectedness of research efforts. South Africa leads with a link strength of 70 

672, closely followed by Nigeria at 482. This strong collaborative network not only enhances 71 

their research visibility but also facilitates greater academic partnerships. Meanwhile, countries 72 

like Kenya and Ethiopia, with link strengths of 250 and 258, respectively, indicate active 73 

participation in collaborative research initiatives, which are essential for addressing complex 74 

challenges through shared expertise. When comparing African countries to their non-African 75 

counterparts, the data reveals a noteworthy trend. Australia produced 68 documents with 2,344 76 

citations, while Canada had 67 documents and 1,468 citations. Although these countries are 77 

not the primary authors, their presence in co-authorship arrangements with African researchers 78 

illustrates the global nature of academic collaboration and the importance of international 79 

partnerships in enhancing research impact. Despite the promising trends, the data also 80 

highlights disparities in research output among different African nations. Countries like Benin, 81 

with only 13 documents and 191 citations, and Namibia, with 12 documents and 349 citations, 82 

demonstrate lower levels of research activity on antimicrobial pollution. This underscores the 83 

potential for growth in these regions, where increased investment in research infrastructure and 84 

collaboration could significantly enhance their contributions to the scholarly community.  85 

Jo
urn

al 
Pre-

pro
of



4 

In Sub-Saharan Africa (SSA), wastewater is usually treated using waste-stabilization ponds 86 

(WSPs). Designs of the conventional WSPs do not incorporate removal or degradation of 87 

antibiotics which magnify the problem. Reports of occurrences of antibiotics and other 88 

emerging contaminants in the environment are globally available (Hossein et al., 2022; Hossein 89 

et al., 2023; Makokola et al., 2019; H. Miraji et al., 2016; Miraji et al., 2021; Ripanda & Miraji, 90 

2022; Ripanda et al., 2022; Ripanda et al., 2021), and several measures have been proposed for 91 

their remediation (Asha Ripanda, 2022; Asha Ripanda, 2023; Hossein et al., 2023; H Miraji et 92 

al., 2023; A. Ripanda et al., 2023), for a healthier and more sustainable ecology. The occurrence 93 

of more than 15 antibiotics belonging to sulfonamides, β-lactams, macrolides and 94 

aminoglycosides classes, and trimethoprim in hospital effluents, wastewater treatment plants 95 

(WWTPs), and surface waters have been reported in SSA (Makaye et al., 2022; Makokola et 96 

al., 2019; Ngigi et al., 2020; Ripanda et al., 2024a; A. S. Ripanda et al., 2023). Antibiotics 97 

pollution poses significant risks to ecosystem health and functioning (Adelowo et al., 2012; 98 

Grenni et al., 2018; Ramírez-Malule et al., 2020; Wilkinson et al., 2022).  99 

 100 

Figure 2: Co-authorship representation of African countries with the highest publication 101 

outputs from 2000 to 2025, highlighting both local contributions and international 102 

collaborations. (Source: Scopus data base)  103 
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The continuous exposure of bacteria to low levels of antibiotics in the environment creates 104 

selective pressure, favoring the survival and proliferation of antibiotic-resistant strains 105 

(Adelowo et al., 2020; Weiss et al., 2018; Yitayew et al., 2022). These resistant bacteria can 106 

transfer their resistance genes to other bacteria, including pathogenic microbes, leading to 107 

treatment complications (Adelowo et al., 2020; Gupta et al., 2019; Rong et al., 2021; Weiss et 108 

al., 2018; Yitayew et al., 2022) , and compromising human and ecological health. The 109 

disruption of microbial communities can have cascading effects on ecosystem stability, nutrient 110 

availability and recycling, and overall ecosystem functioning (Eapen et al., 2024; Huang et al., 111 

2020; Kulik et al., 2023). Currently, in SSA, there is increased use of antibiotics to mitigate the 112 

increased diseases, which may go hand in hand with reports of their occurances in the 113 

environment. These antibiotics are also used in agronomic activities such as aquaculture, 114 

human therapeutic agents and veterinary drugs, including wildlife.  115 

The potential ecological consequences of antibiotics contamination are significant and can have 116 

far-reaching impacts on ecosystems (Z. Li et al., 2023; Yarkwan, 2023). Disruption of 117 

microbial communities by antibiotics (da Silva-Brandao et al., 2023; Hossein et al., 2023; 118 

Karungamye, 2022; Karungamye et al., 2022; H Miraji et al., 2016; Msigala et al., 2017; 119 

Siachalinga et al., 2023; Virhia et al., 2023), can cascade through the food web, affecting 120 

primary producers, consumers, and decomposers (Miraji et al., 2021; Ripanda et al., 2022; A. 121 

S. Ripanda et al., 2023; Ripanda et al., 2021). Antibiotics pollution can promote the 122 

development and spread of antibiotic-resistant bacteria, compromising the effectiveness of 123 

antibiotics in clinical setting (Virhia et al., 2023). This may threaten wildlife health, as it can 124 

increase the incidence of antibiotic-resistant infections in vulnerable populations (da Silva-125 

Brandao et al., 2023; Z. Li et al., 2023; Mishra et al., 2023; Siachalinga et al., 2023; Stocker et 126 

al., 2023), impacting ecological health and resilience. However, SSA faces unique challenges 127 

due to regional factors such as climatic conditions that favour growth and proliferations of 128 

pathogens leading to increased use of antibiotics hence pollution and related impacts, requiring 129 

intervention. To effectively combat antibiotic resistance, clinical facilities must strengthen 130 

laboratory capacity, adopt evidence-based prescribing practices, and engage in 131 

multidisciplinary collaborations. Investing in these areas will enhance the ability to address the 132 

region's unique challenges, such as high disease burdens, climatic factors, and reliance on 133 

herbal medicines, while minimizing the spread of resistant pathogens. Reports have been 134 

published detailing rampart use of non-prescription drugs by the communities including 135 

antibiotics (Kayode et al., 2020; Vickers-Smith et al., 2020), which may increase active 136 

chemical load in the environment. The non-prescribed dispensing of antibiotics is a widespread 137 
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practice among community drug retail outlets (CDROs) in many Sub-Saharan African (SSA) 138 

countries (Belachew et al., 2021; Belachew et al., 2022; Ndaki et al., 2021; Nsengimana et al., 139 

2023; Sono et al., 2023; Zewdie et al., 2024). This unchecked accessibility and misuse of 140 

antibiotics significantly heighten the risk of accelerating antibiotic resistance, undermining the 141 

effectiveness of the limited antibiotic in the region (Belachew et al., 2021). The growing 142 

concern over potential harm to ecosystems, including aquatic life and the increased risk to 143 

human health, domestic animals, and wildlife exposure, arises from the use of contaminated 144 

waters (Maranho et al., 2017; Molla, 2018; Ogunlaja et al., 2022; Tell et al., 2019), and food. 145 

This risk is exacerbated when partially or untreated wastewater is reused for irrigation, 146 

aquaculture, or urban water discharge, impacting the food chain. Therefore, the current work 147 

investigates ecological consequences of antibiotics pollution in Sub-Saharan Africa, focusing 148 

on the sources of antimicrobial pollutants, resistant genes, pathways, and potential 149 

implications.  150 

Methodology 151 

This literature review focuses on Sub-Saharan Africa, with countries selected based on the 152 

availability of data regarding antibiotics pollution, antibiotic resistance, and their genes, 153 

various environmental matrices including surface water, ground water, wastewater effluents, 154 

sediments, hospital waste, soils, and food chain. TITLE-ABS-KEY ( ( "Antibiotic pollution" 155 

OR "antibiotics" OR "antibiotic resistance" OR "resistant genes" OR "resistant microbes" OR 156 

"resistant drug" OR "health impacts" ) AND ( "Wastewater" OR "surface waters" OR "waters" 157 

OR "groundwater" OR "aquatics" ) ), and 45,971 documents found. Some of keywords used 158 

are presented by Figure 3, together with these also included environmental matrices, and the 159 

names of individual Sub-Saharan African countries were used for the search.  160 
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 161 

Figure 3: Keywords for 200 occurrences of antibiotics, antibiotic resistance and their 162 

genes for the recent 3720 papers affiliated in African countries (Source: Scopus data 163 

base) 164 

The databases employed for sourcing journal articles included Web of Science, Scopus, Google 165 

Scholar, Wiley Online Library, ScienceDirect, Taylor & Francis Online, Sage Publishing, and 166 

PubMed. This comprehensive review primarily focused on the environmental presence, 167 

dissemination, and ecotoxicity, resulting in a dataset drawn from studies across Sub-Saharan 168 

Africa. (P. Gupta et al., 2023) 169 

Source and circulation of antibiotic pollutants 170 

Antibiotics, their metabolites, and transformational products can enter the environment through 171 

hospital effluents, pharmaceutical waste, agricultural effluents, and improper disposal of 172 

unused or expired medications (Hossein et al., 2018; Hossein et al., 2022; Makaye et al., 2022; 173 

Makokola et al., 2019; H. Miraji et al., 2016; Miraji et al., 2021; Moto et al., 2023b; Ripanda 174 

& Miraji, 2022; A. S. Ripanda et al., 2023), the largest contribution is from the use of 175 

medicines, where they can pass through our bodies into the environment. Once in the 176 

environment, antibiotics can persist, accumulate (Hossein et al., 2018; Hossein et al., 2022; 177 

Makaye et al., 2022; Makokola et al., 2019; H. Miraji et al., 2016; Hossein Miraji et al., 2023; 178 

Miraji et al., 2021; Moto et al., 2023a; Ripanda & Miraji, 2022; A. S. Ripanda et al., 2023) , 179 

and interact with ecosystems in ways that have far-reaching consequences.  Figure 4, indicates 180 
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that antibiotics originates from therapeutic use in both human and veterinary, other agronomic 181 

activities, direct disposal, effluent release untreated or after partial treatment from 182 

pharmaceutical industry, or hospitals (Hossein et al., 2023; Novick & Ness, 1984; Ripanda et 183 

al., 2024b; A. S. Ripanda, 2024; A. S. Ripanda et al., 2023), and contaminated agricultural field 184 

(Manyi-Loh et al., 2018). This leads to their persistent occurances in the environment and 185 

circulation through food chain creating harm to entire ecology. Nantaba and Coallegues 186 

reported occurances of quantifiable levels of antibiotics in Lake Victoria, and their ecotoxic 187 

risk assessed (Nantaba et al., 2024). Report of levofloxacin (2–120 ng g−1 dm; dry mass), 188 

ciprofloxacin (3–130 ng g−1 dm) enoxacin (9–75 ng g−1 dm), ibuprofen (6–50 ng g−1 dm), 189 

metoprolol (1–92 ng g−1 dm) and propranolol (1–52 ng g−1 dm) being predominant (Nantaba 190 

et al., 2024). Murchison Bay, being the chief recipient of sewage effluents, municipal and 191 

industrial waste from Kampala city and its suburbs, had the highest levels (Nantaba et al., 192 

2024), this indicates potential impacts to this ecosystem, including bioconcentration, 193 

bioaccumulation, in fish and other lower aquatic species and biomagnification in higher 194 

animals, leading to their circulation in food chain. Report of prevalence of antimicrobial 195 

determinants in fish from Lake Victoria are available (Khatiebi et al., 2024; Mumbo et al., 196 

2023; Onjong et al., 2021). Marijani (2022) reported that E. coli isolates were resistant to 197 

penicillin, erythromycin, gentamicin, azithromycin, and tetracycline, while Salmonella spp. 198 

isolates exhibited resistance to gentamicin, tetracycline, penicillin, and erythromycin 199 

(Marijani, 2022), a similar study in nile pech reported similar results (Ally, 2022). . These 200 

isolates were from marine and freshwater fishes consume in the region. Similar report from 201 

Nigeria indicated that isolates from shellfish were 100% susceptible to ciprofloxacin, 202 

azithromycin and erythromycin and resistant to cefotaxime, cefuroxime, imipenem/clastatin, 203 

augmentin and nitrofurantoin (Oramadike et al., 2024), and from fish ponds (Ayedun et al., 204 

2022). The introduction of antimicrobial pollutants to the environment, their sources and 205 

circulation in the environment and through food chain is detailed in Figure 4.  206 

 207 
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 208 

Figure 4: Sources, and flow of antimicrobial pollutants such as antibiotics in different environmental compartments, and through food chain 209 

as summarized (A. Ripanda, 2024). 210 

 211 
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Studies indicate that up to 70% of antibiotics used in aquaculture and livestock are excreted 212 

without being metabolized, subsequently contaminating surrounding water bodies (Kumar et 213 

al., 2020; Van et al., 2020). Additionally, the inadequate treatment of wastewater from 214 

healthcare facilities and industrial processes further exacerbates the problem (Hossein et al., 215 

2023; Makaye et al., 2022; Makokola et al., 2019; Miraji et al., 2021; Ripanda & Miraji, 2022; 216 

Ripanda et al., 2022; A. S. Ripanda et al., 2023; Ripanda et al., 2021), which threaten the 217 

ecosystem safety and sustainability. Furthermore, the improper disposal of expired or unused 218 

medications contributes to this pollution, as many communities lack proper waste management 219 

systems. These practices not only threaten water quality but also pose significant risks to human 220 

health and the environment, highlighting the urgent need for improved regulatory frameworks 221 

and sustainable management practices across the continent.  222 

Environmental Consequences of Antibiotic pollution 223 

Antibiotic pollution may pose potential ecological consequences across Africa, significantly 224 

impacting ecosystem health, biodiversity, and agricultural sustainability. Report of occurances 225 

of 47 pharmaceuticals, 31 of which were detected in African waters. Seven of detected 226 

pharmaceuticals (propyphenazole, sulfamerazine, levamisole, tryptophan, dibucaine, albuterol, 227 

and fenpropimorph) are not approved medications in South Africa (Madikizela, Nuapia, et al., 228 

2022). These results suggest a need for further research into the fate of pharmaceuticals in 229 

surface waters, and a quantification of the risks associated with the identified drugs because 230 

they are likely to accumulate in the tissues of fish/aquatic organisms, thus affecting humans 231 

(Madikizela, Nuapia, et al., 2022), as similarly, reported in Kenya (Kandie et al., 2020), and 232 

other SSA countries (Khatiebi et al., 2023; Nantaba et al., 2020). This contamination was 233 

associated with a marked decrease in microbial diversity and an increase in antibiotic-resistant 234 

bacteria, raising concerns about the potential for resistant strains to enter the food chain and 235 

compromise public health. Similarly, research indicates that the use of effluents from 236 

wastewater treatment for irrigation not only elevated antibiotic levels in agricultural soils but 237 

also resulted in reduced soil microbial activity, which is crucial for nutrient cycling and plant 238 

health (Bougnom et al., 2020; Slobodiuk et al., 2021). The presence of these pollutants has far-239 

reaching implications, as they can disrupt essential ecosystem functions, threaten food security 240 

by diminishing crop yields, and exacerbate the public health crisis of antibiotic resistance. 241 

These findings highlight the urgent need for comprehensive strategies to address antibiotic 242 

pollution, safeguard environmental health, and protect the livelihoods of communities 243 

dependent on agriculture in Africa.  244 
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Impacts of environmental parameters on fate of antibiotics 245 

Environmental parameters such as pH, organic matter, and the presence of other substances 246 

play a crucial role in the behavior and fate of antibiotics in soil and water, as well as in the 247 

transfer of antibiotic resistance genes (ARGs) (Deng et al., 2024). The pH influences the 248 

solubility and degradation rate of antibiotics; in more acidic or alkaline conditions, certain 249 

antibiotics degrade faster, reducing their persistence in the environment (Feng et al., 2021). 250 

Organic matter can either bind antibiotics, reducing their bioavailability, or facilitate their 251 

mobility through complexation, depending on the antibiotic's properties (Conde-Cid et al., 252 

2020; Feng et al., 2021). Studies show that high organic matter content in soil can act as a 253 

reservoir, slowing antibiotic degradation and prolonging their environmental presence (Guo et 254 

al., 2024; Nkoh et al., 2024). Additionally, the presence of metals like copper or zinc, which 255 

are common in agricultural and industrial runoff, can co-select for ARGs (Maurya et al., 2020; 256 

Mazhar et al., 2021). In such environments, bacteria exposed to both antibiotics and metals are 257 

more likely to develop and transfer resistance due to shared stress responses impacting 258 

ecological health. Further, the soils with high organic carbon and metal concentrations were 259 

hotspots for ARGs, and similar findings have been reported in wastewater-impacted 260 

environments in Africa (Agramont et al., 2020; Bosch et al., 2023). These interactions highlight 261 

the importance of environmental conditions in both the persistence of antibiotics and the 262 

dissemination of resistance genes.  263 

In the environment, antibiotics can be absorbed by plants through their roots, especially when 264 

present in soil or irrigation water (El Gemayel & Bashour, 2020; Marques et al., 2021). The 265 

uptake and interaction of antibiotics with plants depend on the type of antibiotic, plant species, 266 

and environmental conditions (El Gemayel & Bashour, 2020). Research has shown that 267 

antibiotics like tetracycline and sulfonamides are readily absorbed by plants such as lettuce, 268 

radish, and wheat (Camacho-Arévalo et al., 2021; Tasho et al., 2020), with antibiotics 269 

accumulating in edible plant tissues which may impact human and other animal health through 270 

food chain. Plants may develop tolerance to these compounds by modifying their metabolic 271 

pathways, such as producing detoxifying enzymes or altering cell membrane permeability to 272 

reduce antibiotic accumulation (El Gemayel & Bashour, 2020). Studies revealed that antibiotic 273 

uptake is higher in crops grown in soils irrigated with wastewater, posing risks to food safety 274 

and human health through the consumption of contaminated crops.  275 

Development of tolerance mechanisms 276 
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Plants have developed several tolerance mechanisms to cope with antibiotic toxicity, allowing 277 

them to survive in contaminated environments. One key mechanism is the activation of 278 

detoxification pathways, where plants produce enzymes such as peroxidases, cytochrome P450 279 

monooxygenases, and glutathione S-transferases (GSTs) to break down and detoxify 280 

antibiotics (P. Chakraborty et al., 2023; Jaiswal et al., 2021; Kurade et al., 2021). These 281 

enzymes modify the chemical structure of antibiotics, rendering them less harmful. Another 282 

tolerance mechanism is the sequestration of antibiotics in vacuoles or cell walls, isolating the 283 

toxic compounds from critical cellular functions (Martín, 2020; Wei et al., 2023). Additionally, 284 

plants can alter their membrane permeability to restrict antibiotic uptake or actively pump 285 

antibiotics out of cells through transport proteins, such as ATP-binding cassette (ABC) 286 

transporters (Seukep et al., 2022).  287 

Research has shown that plants like lettuce accumulates enrofloxacin and ciprofloxacin from 288 

intensive animal husbandry (McCormick et al., 2024). Enrofloxacin levels was 7.3 μg/kg in 289 

fresh poultry litter, while its metabolite ciprofloxacin was 39.22 μg/kg after storage. Although 290 

no fluoroquinolones were detected in soils, lettuce from manured plots contained 14.97 μg/kg 291 

of enrofloxacin and 9.77 μg/kg of ciprofloxacin at 14.97, providing evidence of 292 

fluoroquinolone bioaccumulation in plants. Similarly the abundance of sul1 and intI1 in poultry 293 

litter was not affected by storage (McCormick et al., 2024). Plants like wheat and lettuce (Choe 294 

et al., 2024), and rice, produce higher levels of antioxidant enzymes, such as superoxide 295 

dismutase and catalase in response to antibiotic exposure, reducing oxidative stress caused by 296 

stressors such as antibiotics. In some cases, plants may also use bioaccumulation as a defence 297 

strategy, storing antibiotics in less metabolically active tissues. Studies in Africa, particularly 298 

in wastewater-irrigated agricultural regions, have demonstrated that plants exposed to 299 

antibiotic-laden environments develop such tolerance mechanisms (Bougnom et al., 2020; 300 

Gudda et al., 2020; Onalenna & Rahube, 2022), allowing them to survive but potentially 301 

introducing these contaminants into the food chain.  302 

Antibiotics, soil health, fertility, and agriculture productivity 303 

Antibiotics can significantly impact soil health and fertility, which are critical for sustainable 304 

agriculture. When antibiotics enter the soil through agricultural runoff, wastewater irrigation, 305 

or manure application (Zalewska et al., 2021), they can disrupt the microbial communities 306 

essential for nutrient cycling and organic matter decomposition. Studies have shown that the 307 

presence of antibiotics such as tetracyclines and sulfonamides can reduce the diversity and 308 

abundance of beneficial soil microbes (Conde-Cid et al., 2020; Li et al., 2024), including 309 

Jo
urn

al 
Pre-

pro
of



13 

bacteria involved in nitrogen fixation and organic matter breakdown. This disruption can lead 310 

to decreased soil fertility, as key nutrients become less available to plants. Additionally, 311 

antibiotics can inhibit important soil processes such as the decomposition of organic materials 312 

(Li et al., 2024), which is vital for maintaining soil structure and nutrient availability. A study 313 

by  Xie et al (2020) (Wang et al., 2020), reported that soils contaminated with antibiotics 314 

exhibited lower enzyme activity associated with nutrient cycling, indicating impaired soil 315 

function. Moreover, the persistence of antibiotics in the soil can lead to the selection of 316 

antibiotic-resistant bacteria, which can further complicate agricultural practices by 317 

compromising plant health and food safety. The accumulation of resistant strains in the soil 318 

can also pose risks to human health, particularly through the consumption of crops grown in 319 

contaminated soils. In Sub-Saharan Africa, where agricultural practices often involve the use 320 

of wastewater and manure, the effects of antibiotic pollution on soil health are increasingly 321 

recognized as a significant concern for food security and environmental sustainability. This 322 

indicates potential impact on livelihood for Africa as antibiotic pollution may lead to decreased 323 

agricultural production, which is a major economic activity. Additionally, antibiotic residues 324 

can accumulate in crops, raising food safety concerns and limiting market access (Arsène et 325 

al., 2022). vegetables grown in antibiotic-contaminated soils contained residues exceeding 326 

permissible limits (Akhter et al., 2024; Akhter et al., 2023) , which could jeopardize public 327 

health and consumer confidence. Furthermore, the proliferation of antibiotic-resistant bacteria 328 

in agricultural settings increases the risk of resistant strains entering the food chain (Akhter et 329 

al., 2024), complicating treatment options for infections and threatening human health. As 330 

agriculture in Africa faces these interconnected challenges, addressing antibiotic pollution is 331 

crucial for promoting sustainable farming practices, ensuring food security, and safeguarding 332 

public health across the continent.  333 

Antibiotics use and prescription practices in SSA 334 

Antibiotic prescription rates are notably elevated in hospitals across sub-Saharan Africa 335 

(Siachalinga et al., 2023). This is largely attributed to the prevalent practice of empirical 336 

prescribing, primarily driven by the absence of microbiology testing (Siachalinga et al., 2023). 337 

Furthermore, guidelines for antibiotic use are either absent or inadequately adhered to when 338 

they are available (Siachalinga et al., 2023). Further results revealed a widespread occurrence 339 

of antibiotic utilization in hospitals, with rates frequently exceeding 50% (Siachalinga et al., 340 

2023). The prevalence varied, ranging from 37.7% in South Africa to a substantial 80.1% in 341 

Nigeria. Notably, there was a significant trend towards the prescription of broad-spectrum 342 
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antibiotics, possibly influenced by the limited availability of facilities within hospitals 343 

(Siachalinga et al., 2023). Concerns related to co-payments for microbiological tests might be 344 

contributing to the reliance on empirical prescribing. This situation is compounded by the lack 345 

of guidelines or poor adherence to existing guidelines, with adherence rates dropping as low as 346 

4% (Siachalinga et al., 2023). The double-edged sword of antibiotic prescription and pollution 347 

is intricately linked to the lifecycle of antibiotics, from their production to their use and 348 

eventually disposal (Anuar et al., 2023). In Africa, the acquisition of antibiotics without a 349 

prescription remains prevalent, and in certain African countries, all community pharmacies 350 

engage in dispensing antibiotics without the requirement for a prescription (Sono et al., 2023).  351 

Similarly, the manufacturing process can contribute to environmental pollution as residual 352 

antibiotics, as well as by-products and impurities from manufacturing, may enter waterways if 353 

not effectively managed, creating harm. Similarly, the use of antibiotics in clinical settings 354 

results in pollution. After consumption, antibiotics are partially metabolized and excreted by 355 

humans and other animals. Untreated effluents from households, industries, and healthcare 356 

facilities may contain trace amounts of antibiotics, releasing effluents may contaminate surface 357 

water, groundwater, and entire ecology. Equally important, antibiotic use in agriculture for 358 

disease prevention and growth promotion in livestock, may lead to their release into the 359 

environment through animal waste and runoff. Antibiotics, once in the environment, can persist 360 

for long periods. This persistence increases the likelihood of them interacting with ecosystems 361 

and contributing to antibiotic resistance. The presence of antibiotics in the environment exerts 362 

selective pressure on bacteria. This can lead to the development and spread of antibiotic-363 

resistant strains, contributing to the global issue of antibiotic resistance. Practices such as 364 

overprescription, misuse, and improper disposal of unused antibiotics can contribute to the 365 

presence of varying concentrations of these drugs in the environment.  366 

Strategies to address antibiotic pollution include improved prescription practices in healthcare, 367 

better management of pharmaceutical waste, enhanced wastewater treatment, and sustainable 368 

agricultural practices that minimize the use of antibiotics. Efforts to combat antibiotic pollution 369 

require a holistic approach, involving healthcare professionals, regulatory bodies, 370 

pharmaceutical companies, and the agricultural sector. Implementing proper disposal methods, 371 

promoting responsible antibiotic use, and investing in advanced wastewater treatment 372 

technologies are essential steps to mitigate the environmental impact of antibiotics. 373 

Additionally, raising awareness among the public and healthcare providers about the 374 
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importance of antibiotic stewardship can contribute to reducing unnecessary prescriptions and, 375 

consequently, antibiotic pollution. 376 

Status of antibiotics pollution in SSA 377 

Currently, there is increased report of antibiotic pollution in the region including Tanzania 378 

(Baniga et al., 2020; Hossein et al., 2018; Kihampa, 2014; Makokola et al., 2019; A. S. Ripanda 379 

et al., 2023), Kenya (Kairigo et al., 2020; Kimosop et al., 2016; Muriuki et al., 2020; Ngigi et 380 

al., 2020; Ngumba et al., 2016; Yang et al., 2016), Uganda (Onohuean & Igere, 2022; Wamala 381 

et al., 2018; Weiss et al., 2018), and (Doutoum et al., 2019; Koumaré et al., 2022; Mansaray et 382 

al., 2022; TALAKI et al., 2020; Woksepp et al., 2023) in other SSA countries. Concerns about 383 

antibiotic pollution are due to practices such as release of contaminated effluents, reuse of 384 

effluents for irrigation, and improper waste management, misuse, and overuse of antibiotics 385 

resulting into development and dissemination of antibiotic-resistant pathogens. Recent views 386 

by Madikizela et al. and Faleye et al., indicates higher levels of environmental antibiotic 387 

concentrations in Africa than anywhere in the world (A.C. Faleye et al., 2018; Madikizela, 388 

2023; Madikizela, Nuapia, et al., 2022; Madikizela, Rimayi, et al., 2022; Thu et al., 2022), 389 

report on how this status can reflect SSA is lacking .The aquatic food and their products, on 390 

the other hand, have been identified as potential transmission root and aquatic habitats as 391 

potential reservoirs of extended-spectrum-lactamase (ESBL)-producing bacteria (Moto et al., 392 

2023a; Nnadozie & Odume, 2019; Tzouvelekis et al., 2012) , raising the risk of ecological 393 

degradation and increasing wildlife disease. The presence of antibiotic residue such as 394 

metronidazole may have effects to the ecosystem as there are reports of the ability of 395 

metronidazole to affect soybean plants and soil microbiota (Jjemba, 2002), cause toxicity effect 396 

in intestinal tissue of fish (Onchorhynchus mykiss) (Gürcü et al., 2016) and aquatic ecosystem 397 

as a whole (Lanzky & Halting-Sørensen, 1997), which indicates a possibility of increased 398 

disease burden in wildlife populations and the deterioration of the ecological health. Figure 4 399 

presents map of SSA, showing report of antibiotic pollution in selected matrices in 400 

environmental compartments, and reported non prescriptional use of antibiotics.  401 

 402 

 403 

 404 

 405 
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406 

Figure 5: Selected SSA countries showing report of antibiotic pollution, presence of antibiotic 407 

resistant microbial populations, including pathogens, and resistant genes in selected matrices 408 

in environmental compartments, and reported non prescriptional use of antibiotics (Base map 409 

data source: OCHA, https://data.humdata.org/dataset/cod-ab-tza. Map created by authors.)  410 

Presented studies (Figure 4) indicate the potential ecosystem exposure to antibiotics, their 411 

metabolic and transformational products (Abdallah et al., 2022; Agyarkwa et al., 2022; Gyesi 412 

et al., 2022; Odonkor et al., 2022; Otoo et al., 2022; Quarcoo et al., 2022), antibiotic resistant 413 

microbes (Abasse et al., 2021; Al Salah et al., 2020; Coulidiaty et al., 2021; Devarajan et al., 414 

2017; Gufe et al., 2019; Kagambèga et al., 2022; Limya et al., 2020; Markkanen et al., 2023), 415 

and resistant genes (Assoumy et al., 2021; Fall-Niang et al., 2019; Mugadza et al., 2021; 416 

Salamandane et al., 2022; Salamandane et al., 2021; Taviani et al., 2022), which may harm 417 

ecosystems. Further, the presented studies indicate the presence of antibiotics (Cige et al., 2023; 418 

Deguenon et al., 2022; Mohamed et al.; Mohamed et al., 2020), in surface waters including 419 

organism living in (Kairigo et al., 2020; Matee et al., 2023; Ngigi et al., 2020; Ngumba et al., 420 

2016; Yang et al., 2016), effluents (Mbanga et al., 2023), (Baniga et al., 2020; Kihampa, 2014; 421 

Musa et al., 2019; A. S. Ripanda et al., 2023), soil, poultry farm (Doutoum et al., 2019; 422 

TALAKI et al., 2020; Woksepp et al., 2023), agricultural areas (Ajibola et al., 2021; Lateefat 423 
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et al., 2022; Ngogang et al., 2020; Takemegni et al., 2021; Tsafack et al., 2021), sediments 424 

(Denku et al., 2022; Ergie et al., 2019; Esemu et al., 2022; Mohammed et al., 2022; Teshome 425 

et al., 2020), feeds, milk (Enurah et al., 2019; Founou et al., 2018), wild animal (Baron et al., 426 

2021), and other matrices (Agrawal et al., 2020; Jesumirhewe et al., 2022; Kimosop et al., 427 

2016; Koumaré et al., 2022; Manishimwe et al., 2021; Mansaray et al., 2022; Muriuki et al., 428 

2020; Onohuean & Igere, 2022; Wamala et al., 2018; Weiss et al., 2018). These results indicate 429 

potential for exposure to human through food chain. Exposure to antibiotics can select for 430 

resistant strains of pathogenic bacteria, which can then transfer their resistance genes to other 431 

microbial community in the environment (Z. Li et al., 2023; Mishra et al., 2023; Salam et al., 432 

2023a) posing a significant concern for human and animal health as it reduces the effectiveness 433 

of antibiotics in treating infections (Kulik et al., 2023; Moyo et al., 2023).  434 

Additionally, the presence of antibiotics in the environment can disrupt natural microbial 435 

communities and ecological processes. Antibiotics can have unintended effects on non-target 436 

organisms, including beneficial bacteria and other microorganisms that play vital roles in 437 

ecosystem functioning (Costanzo & Roviello, 2023; Kulik et al., 2023; Nakakande et al., 2023; 438 

Yarkwan, 2023). Furthermore, the disruption of the natural balance in ecosystems due to the 439 

presence of antibiotics and other chemical loads can have cascading effects on wildlife health. 440 

Changes in microbial communities and the emergence of antibiotic-resistant bacteria can lead 441 

to an increased prevalence of diseases in wildlife populations (Kulik et al., 2023; Yarkwan, 442 

2023), this can have implications for the overall health and stability of ecosystems. Antibiotic 443 

contamination and resistance are known to impose ecosystem injury and their effects are 444 

transboundary, and interdisplinary measures and collaborative efforts are required for 445 

ecological safety. Ripanda et al. [7] suggested wastewater effluents treatment and reduced 446 

discharge, while Onohuean et al. [112] highlighted food safety and market surveillance. 447 

Similarly, in a recent work it was observed that in some SSA countries limited data on active 448 

chemical pollution such as antibiotics is due to absence of state of art equipment [6], and further 449 

Siachalinga and colleagues [35], reported a trend of considerable prescribing broad-spectrum 450 

antibiotics which could be due to lack of facilities within hospitals, along with concerns of co-451 

payments to perform microbiological tests, resulting in empiric prescribing hence potential 452 

antimicrobial pollution [35], as similarly reported by other scholars [123, 124]. Similarly, 453 

report of lack of guidelines or low adherence to guidelines of antibiotics prescription [35], was 454 

raised. There is the need for microbiological facilities and testing, within hospitals to be made 455 

available and the cost subsidized to eradicate empirical prescription. Similarly, environmental 456 

surveillance and monitoring is needed, to ensure public health safety. Key components may 457 
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include monitoring water sources, foods and feeds, and aquatic foods for the presence of 458 

antibiotic residues, assessing soil quality to understand the impact of agricultural practices and 459 

antibiotic use in livestock, and tracking air quality to gauge the dispersion of antimicrobial 460 

agents.  461 

Challenges unique to Sub-Saharan Africa 462 

SSA faces unique challenges that may potentially amplify antibiotic pollution, and therefore 463 

the ecological consequences. Climatic conditions, such as high temperatures, humidity, and 464 

seasonal rainfall (Chowdhury et al., 2018; Nguru & Mwongera, 2023; Situma et al., 2024), 465 

create environments conducive to bacterial survival and proliferation. This, combined with 466 

inadequate sanitation, release of contaminated effluents, and inadequate waste management, 467 

contribute to the persistence and spread of antibiotic-resistant bacteria (Asif et al., 2024; 468 

Gomes, 2024). This results into increased burden of infectious diseases. Data indicates the 469 

region faces a significant disease burden, including infectious diseases like malaria, 470 

tuberculosis, and HIV, which often require prolonged antibiotic treatments (Baral et al., 2024; 471 

Duffey et al., 2024; Makam & Matsa, 2021). According to WHO reginal office, as of 2022, 472 

approximately 25.6 million people in the African region are living with HIV, with 20.8 million 473 

in East and Southern Africa and 4.8 million in West and Central Africa (Kareem et al., 2023; 474 

Tadesse et al., 2024). Similarly, about 760,000 individuals contracted HIV in 2022, with report 475 

of approximately 380,000 deaths from AIDS-related illnesses, while women and girls 476 

accounted for 62% of all new HIV infections in sub-Saharan Africa in 2023 (Eaton et al., 2021).  477 

Several SSA countries are among the 30 high TB burden countries globally. For instance, 478 

Sierra Leone had an estimated TB burden of 289 cases per 100,000 population in 2021 (Asare 479 

et al., 2021; Jemiluyi & Bank-Ola, 2021; Nunes et al., 2025). TB remains a leading cause of 480 

death among people living with HIV in SSA, exacerbating the public health challenge in the 481 

region 2021 (Asare et al., 2021; Jemiluyi & Bank-Ola, 2021; Nunes et al., 2025). SSA bears a 482 

disproportionately high share of the global malaria burden. In 2021, the region accounted for 483 

approximately 95% of malaria cases and 96% of malaria deaths (Oshagbemi et al., 2023; 484 

Sempungu et al., 2023). Children under five are particularly vulnerable, representing about 485 

80% of all malaria deaths in the region (Aheto, 2022; Mbishi et al., 2024; Oguoma et al., 2021). 486 

(Doohan et al., 2024; Duvignaud et al., 2021; P. Li et al., 2023; Malik et al., 2023; McLean et 487 

al., 2023; Sharif et al., 2023; Woolsey & Geisbert, 2021). This high disease prevalence further 488 

accelerates the emergence and transmission of resistant infections, presenting a complex 489 

challenge for public health and ecological stability.  490 
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This further threatens public health as many healthcare facilities in the region are under-491 

resourced, with limited access to advanced diagnostic tools for identifying resistant infections 492 

and monitoring antimicrobial resistance trends (Loosli et al., 2021; Pokharel et al., 2019). A 493 

study by Umutesi and Coallegues recommended strengthening of antimicrobial resistance 494 

diagnostic capacity in rural Rwanda (Umutesi et al., 2021). Similarly, Okoliegbe and 495 

Coallegues reported that  many African laboratories confront substantial difficulties in 496 

implementing efficient quality assurance programs (Musa et al., 2023). This hampered AMR 497 

surveillance due to lack of laboratory capacity, insufficient data collection and analysis, and 498 

poor stakeholder collaboration (Musa et al., 2023). Yet, several initiatives and programs, 499 

including the World Health Organization’s Global Antimicrobial Resistance and Use 500 

Surveillance System (GLASS), the Africa Centres for Disease Control and Prevention (Africa 501 

CDC) Antimicrobial Resistance Surveillance Network (AMRSNET), and the Fleming Fund, a 502 

UK government initiative aimed at tackling AMR in low- and middle-income countries, have 503 

been established to strengthen AMR surveillance.  504 

However, some positive steps are being taken. Facilities that implement infection prevention 505 

and control (IPC) measures, such as proper hygiene protocols, handwashing, and isolation of 506 

infected patients, have shown a reduction in resistant infection rates. While there have been 507 

significant strides in reducing the incidence of some infectious diseases, the region continues 508 

to grapple with high prevalence rates, particularly in countries like Eswatini, Lesotho, and 509 

South Africa, which have some of the highest HIV rates globally. Efforts to combat these 510 

diseases are further complicated by socioeconomic factors, limited healthcare infrastructure, 511 

and emerging health threats. Sustained investment in healthcare systems, education, and access 512 

to treatment is crucial to mitigate the burden of infectious diseases in SSA. Collaborative efforts 513 

between international organizations and governmental agencies have led to training healthcare 514 

workers in antimicrobial stewardship, improving awareness of resistance mechanisms, and 515 

encouraging the prudent use of antibiotics. To effectively combat antibiotic resistance, clinical 516 

facilities must strengthen laboratory capacity, adopt evidence-based prescribing practices, and 517 

engage in multidisciplinary collaborations. Investing in these areas will enhance the ability to 518 

address the region's unique challenges, such as high disease burdens, climatic factors, and 519 

reliance on herbal medicines, while minimizing the spread of resistant pathogens. 520 

Potential implications of antibiotic resistance 521 

Antibiotic resistance is a pressing global health concern with profound implications for both 522 

human, animal populations and the entire ecology (Zinsstag et al., 2023). The overuse, misuse 523 
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and improper disposal of antibiotics have fueled the emergence and spread of antibiotic-524 

resistant bacteria (da Silva-Brandao et al., 2023; Siachalinga et al., 2023; Tadesse et al., 2023; 525 

Virhia et al., 2023; Yismaw et al., 2023; Zinsstag et al., 2023), rendering previously effective 526 

treatments ineffective, resulting into treatment hospitalizations, complications, and increased 527 

mortality rates. Antibiotic residues induce and accelerate antibiotic resistance development, 528 

promote the transfer of antibiotic-resistant bacteria to humans and other organisms, cause 529 

allergies (penicillin) (Macy & Adkinson Jr, 2023), and may induce other severe pathologies, 530 

like cancers (furazolidone, sulfamethazine, and oxytetracycline) (Arsène et al., 2022), bone 531 

marrow toxicity (Arsène et al., 2022), anaphylactic shock, nephropathy (gentamicin), 532 

mutagenic effects, and reproductive disorders (chloramphenicol) (Elisabeth, 2023). This 533 

resistance arises through various mechanisms, such as genetic mutations and horizontal gene 534 

transfer (Abdallah et al., 2022; Mugadza et al., 2021; Yitayew et al., 2022), allowing bacteria 535 

to withstand the effects of antibiotics. This is particularly concerning (Moyo et al., 2023), in 536 

SSA, where infectious diseases like malaria, tuberculosis, and bacterial infections are 537 

prevalent. As of 2019, SSA had the highest mortality rate of about 24 deaths per 100,000 538 

attributable to AMR compared to other regions (Kariuki et al., 2022), this may impair ability 539 

to manage common infections, which results in prolonged illness (Holloway & Everard, 2023; 540 

Moyo et al., 2023; Nakakande et al., 2023; Stocker et al., 2023) , greater mortality rates, and 541 

more expensive healthcare. Antibiotic resistance also can make interventions such as surgeries, 542 

chemotherapy, and organ transplants (Costanzo & Roviello, 2023; Salam et al., 2023a), more 543 

difficult and additional burden on healthcare systems. Similarly important, the use of 544 

antibiotics such as glycopeptide and avoparcin as feeds additives for the growth promotion of 545 

animals may result to the occurrence of vancomycin-resistant enterococci in food animals. In 546 

this case, vancomycin-resistant enterococci and vancomycin resistance determinants can 547 

therefore spread from animals to humans complicating treatments (Oliveira et al., 2020; 548 

Wegener, 2003). Therefore, surveillance, infection prevention and control measures, 549 

responsible antibiotic use in both human and other organisms, and the development of new 550 

antibiotics and alternative treatments is needed for ecological safety and sustainability.  551 

Ecosystem health 552 

Ecosystem health is a holistic measure of the well-being and resilience of an ecological system, 553 

reflecting its capacity to sustain biodiversity, support vital ecological processes (Asha 554 

Ripanda, 2022; S. K. Chakraborty et al., 2023; Davis et al., 2023) , and resist or recover 555 

from disturbances. A healthy ecosystem is characterized by a dynamic balance where various 556 

species coexist, interact, and contribute to the overall stability and functionality of the 557 

environment. It encompasses the intricate web of relationships between living organisms, their 558 
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physical surroundings, and the countless interactions that define the ecosystem's structure (S. 559 

K. Chakraborty et al., 2023). Ecosystem health is not only vital for the persistence of diverse 560 

flora and fauna but also crucial for the well-being of human societies that depend on these 561 

systems for resources, climate regulation, and other essential ecosystem services (Nozarpour 562 

et al., 2023). Human activities, such as pollution (Shi et al., 2023; Wilkinson et al., 2022), 563 

habitat destruction (Shaikh et al.; Sun et al., 2023), and climate change (Campbell et al., 2018; 564 

S. R. Gupta et al., 2023; Noureen et al., 2022), can pose significant threats to ecosystem health, 565 

underscoring the importance of sustainable practices and conservation efforts to ensure 566 

sustainability.  567 

Antibiotic pollution, can disrupt natural microbial communities, affecting the balance of 568 

microorganisms essential for nutrient cycling, soil fertility, and other ecological 569 

processes (Lencastre et al., 2023; Traore et al., 2023). Similarly, antibiotics may 570 

accumulate in organisms, magnify within the food chain. This bioaccumulation can lead 571 

to higher concentrations of antibiotics in predators at the top of the food chain, 572 

potentially posing risks to higher organisms, including humans.  The presence of 573 

antibiotics in the environment exerts selective pressure on bacteria, favoring the 574 

survival and proliferation of antibiotic-resistant strains (S. K. Chakraborty et al., 2023; 575 

da Silva-Brandao et al., 2023; Holzinger et al., 2023; Hossein et al., 2023; Rapport et 576 

al., 1998), leading to the transfer of resistance genes among bacteria, further 577 

contributing to the global antibiotic resistance crisis. Efforts to combat antibiotic 578 

pollution are needed including focus on implementing improved waste management, 579 

including wastewater treatment, promoting responsible antibiotic use, and raising 580 

awareness about the environmental impact of contamination. Revisi ting regulation to 581 

include other contaminants and international collaboration are essential to mitigate the 582 

long-term effects on ecosystems.  583 

 584 

Status of ecosystem health and its connection to wildlife diseases  585 

The presence and frequency of wildlife diseases in SSA are closely related to the state of the 586 

ecological health (Berkhout et al., 2023; Islam et al., 2023). SSA is home to a diverse array of 587 

ecosystems, ranging from expansive savannas and rainforests to freshwater and marine 588 

environments. A variety of wildlife species, many of which are endemic and of great 589 

conservation significance, rely on these ecosystems for vital habitats (Akani, 2023). However, 590 

numerous factors, including human activities, climate change, and habitat degradation, have 591 
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significantly impacted ecosystem health in the region. Deforestation, land conversion for 592 

agriculture, and unsustainable resource extraction have led to habitat loss and fragmentation, 593 

disrupting natural ecological processes (S. R. Gupta et al., 2023). Contamination from 594 

industrial activities, mining, and improper waste disposal further contribute to environmental 595 

degradation (Ulucak & Baloch, 2023). Figure 5 presents conceptualization of the relationships 596 

between human, animal, wildlife, ecosystem, and circulation of diseases. The consequences 597 

of these ecosystem disturbances are manifold and have profound implications for 598 

wildlife health (Ulucak & Baloch, 2023). Disrupted ecosystems can lead to changes in 599 

species interactions, alter population dynamics, and increase the risk of disease 600 

transmission (Ulucak & Baloch, 2023). When ecosystems become imbalanced, there 601 

can be an increase in the prevalence and emergence of infectious diseases in wildlife 602 

populations, which may be transferred to human and domestic animals and the entire 603 

ecosystems. SSA has experienced several notable wildlife disease outbreaks, such as 604 

Ebola in great apes and bats, anthrax in herbivores, and various zoonotic diseases like 605 

rabies and trypanosomiasis (Gilbert et al., 2023). These outbreaks not only pose threats 606 

to wildlife but can also have spillover effects on human populations, leading to public 607 

health crises (Manes et al., 2023; Vora et al., 2023). 608 

 609 

Figure 6: Conceptualization of the circulation of wildlife diseases and factors that magnify 610 

their occurrences.  611 
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Furthermore, the interconnectedness of ecosystems in SSA means that changes in one 612 

ecosystem can have ripple effects across the region (Lakshmisha & Thiel, 2023; 613 

Lencastre et al., 2023; Schaeffer et al., 1988; Vora et al., 2023). For example, alterations 614 

in freshwater ecosystems due to contamination or water scarcity can impact aquatic 615 

wildlife populations, disrupt food chains, and affect the livelihoods of communities that 616 

rely on these resources (Berkhout et al., 2023; Ogwu et al., 2023; Rapport et al., 1998; 617 

Schaeffer et al., 1988). To address the status of ecosystem health and its connection to 618 

wildlife diseases in SSA, there is a need for integrated and holistic approaches. 619 

Conservation efforts should focus on preserving and restoring habitats, promoting 620 

sustainable land and resource management practices, and enhancing environmental 621 

monitoring and surveillance systems as reported by previous researchers (Berkhout et 622 

al., 2023; Ogwu et al., 2023; Rapport et al., 1998; Ray, 2023; Schaeffer et al., 1988; 623 

Traore et al., 2023). Collaboration between governments, local communities, 624 

researchers, and conservation organizations is crucial to develop effective strategies 625 

that consider the complex interplay between ecosystem health, wildlife diseases, and 626 

human well-being. By safeguarding ecosystem health, we can protect wildlife 627 

populations, mitigate disease risks, and ensure the long-term sustainability of SSA 628 

biodiversity.  629 

Impact of Human activities on ecosystem health and wildlife diseases 630 

Anthropogenic activities (Berkhout et al., 2023; Rapport et al., 1998; Schaeffer et al., 631 

1988), have significant contribution to the deterioration of ecological health and the 632 

increased occurrence of wildlife diseases. As human populations grow and expand, the 633 

demand for resources and the alteration of natural landscapes intensified, leading to a 634 

range of negative impacts on ecosystems and wildlife (Gabyshev et al., 2023; 635 

Lakshmisha & Thiel, 2023; Schaeffer et al., 1988). A study by Namusisi and colleagues 636 

(Namusisi et al., 2021), reported twenty-nine percent (29.0%, CI: 24.4–33.9) of respondents 637 

were engaged in hunting of wildlife such as chimpanzee (Pan troglodytes) and 45.8% (CI: 638 

40.6–51.0), cane rats (Thryonomyidae spp), indicating presence of anthropogenic activities. 639 

Among the named reasons as why communities hunt, includes acquisition of animal protein 640 

(55.3%, CI: 50.1–60.4), medicinal and cultural uses of wildlife and or its parts (22.7%, CI: 641 
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18.6–27.4) (Namusisi et al., 2021). Similarly, hunting and bushmeat consumption is persistent 642 

for other perceived reasons; including bushmeat strengthens the body, helps mothers recover 643 

faster after delivery, boosts one’s immunity and hunting is exercise for the body (Namusisi et 644 

al., 2021). However, it was reported that respondents fall sick after consumption of bushmeat 645 

at least once (7.9%, CI: 5.3–11.1), with 5.3% (CI: 2.60–9.60) reporting similar symptoms 646 

among some family members (Namusisi et al., 2021). The participants have awareness of 647 

diseases transmissible from wildlife to humans (37.0%, CI: 32.1–42.2), although 88.7% (CI: 648 

85.0–92.0) (Namusisi et al., 2021), had heard of Ebola or Marburg without context. Similarly, 649 

hunting non-human primate poses a health risk (cOR = 0.4, 95% CI = 0.1–0.9), compared to 650 

edible rats (cane rats) and wild ruminants (cOR = 0.7, 95% CI = 0.2–2.1). These results 651 

suggests that pathways for zoonotic disease spillover to humans exist at interface areas driven 652 

by livelihoods, nutrition, and cultural needs. The negative impacts of anthropogenic 653 

activities on ecosystem health and wildlife diseases need concerted efforts for their 654 

mitigation. It is crucial to prioritize habitat protection, restoration (Gilbert et al., 2023; 655 

Mwakapuja et al., 2013; van Heezik & Brymer, 2018), and sustainable land management 656 

in conservation programs.  657 

The changes in land use associated with urbanization to cater for growing population 658 

(Das & Das, 2019; Komugabe-Dixson et al., 2019; Mwabumba et al., 2022; Peng et al., 659 

2018), are causing destruction of ecosystems and natural services . Land use changes, 660 

for example, are largely represented in the transformation of different land types in the 661 

riparian area of Lake Tanganyika, where there are more settlements, with the conversion 662 

of forestland to arable land being the most prominent. Nonetheless, the rate of land use 663 

change in the region was not very high, substantial changes happened in the towns, particularly 664 

in the north. As a result, wildlife habitat and other ecosystem services are being lost, potentially 665 

leading deterioration of ecosystem health and increased diseases (Sintayehu, 2018). Similarly, 666 

pathogenic organisms are spreading more broadly geographically, within and across 667 

populations, and between other animals and humans. Most of studies utilize freshwater 668 

macroinvertebrate species, to address overall freshwater ecosystem health (O’Brien et al., 669 

2016). As a result of the diminishing health of the freshwater environment, there is a need for 670 
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more indicators that can capture both short and long-term changes, as well as the overall trend 671 

in freshwater ecosystem health (Elias, 2021). The absence of any sensitive taxa or the 672 

presence of few if any; increased dominance of only a few taxa that are tolerant to 673 

pollution, indicating that pollution has a significant influence on ecosystem health 674 

(Elias, 2021; Hossein et al., 2023; Hossein Miraji et al., 2023), requiring intervention.  675 

The majority of factors that influence ecological health are anthropogenic in nature, climate 676 

change, globalization, population growth, and other new social habits will accelerate the trend 677 

(Ford et al., 2020; Pozio, 2020). As global 'traffic' grows, infectious pathogens have increased 678 

opportunities to mingle, transfer between species, and exchange genetic materials, potentially 679 

resulting in novel fatal pathogens. Bush meat and other wet market products are becoming 680 

widely available. These problems are exacerbated by emerging social activities in 681 

industrialized countries, such as a love for exotic pets, wild animal products, and unmanaged 682 

ecotourism. These factors have a significant impact on pathogen dynamics and cross-species 683 

pathogen crossover. Domestic animal grazing zones overlap or are adjacent to wildlife areas, 684 

resulting in increased contact and competition for natural resources. Similarly, farmed wildlife 685 

including deer and elk and, wildlife relocation countrywide and worldwide. Endangered 686 

wildlife species can become infected with a variety of infections including resistant infections. 687 

Finally, as people encroach on previously inaccessible habitats and settings, they come into 688 

contact with new infections (Mwakapuja et al., 2013), and could spread them beyond their 689 

historical limits.  690 

Potential contribution of antibiotics pollution to deterioration of ecosystem health 691 

Nature is increasingly being considered as a manageable resource for enhancing human well-692 

being in cities (H.-Y. Liu et al., 2021). By treating nature as a product that gives health benefits 693 

and determining minimal amounts required to attain benefits, we risk trivializing a profound 694 

subjective response to nature (Jimenez et al., 2021). In this case, the world may end up with a 695 

diluted, biodiversity-depleted form of nature with harmed ecological functions (Armstrong, 696 

2024; Mahecha et al., 2022). We could worsen ongoing movements toward more impoverished 697 

settings by establishing a new baseline of what is deemed normal. Among concerns of these 698 
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substances in the environment, are hormonal disruption in fish (Gairin et al., 2022; Islam et al., 699 

2024), decline sperm count, intersexuality, muscularization of female fish and the antimicrobial 700 

resistance (AMR) (Huang et al., 2020), as a result of discharge of antibiotics and other 701 

antimicrobial pollutants into the environment, which lead to extinction of some species. 702 

Antibiotic, ciprofloxacin caused cardiac dysfunction in zebrafish, such as decreased heart rate 703 

and cardiac output (Shen et al., 2019). Short-term exposure to ciprofloxacin doses of 1, 10, and 704 

100 g.L1 had sublethal effects on Neotropical catfish (Rhamdia quelen) (Kitamura et al., 2022). 705 

In addition, Ciprofloxacin increased antioxidant system activity (Catalase in liver and posterior 706 

kidney) (Kitamura et al., 2022). These results indicates that under short-term exposure, 707 

Ciprofloxacin causes toxic effects in R. quelen that requires intervention, for ecosystems 708 

sustainability. Antibiotics are essential in the treatment of diseases; however, AMR has been 709 

deemed a threat to public health by the WHO and is expected to cost around 10 million lives 710 

per year by 2050. Antibiotics and other emerging contaminants in the environment (Ahmad et 711 

al., 2021; Salam et al., 2023b; Tang et al., 2023), are globally available which also may 712 

contribute to increased active chemical load and may pose unknown effects in the ecosystem, 713 

hence requiring intervention.  714 

Antibiotic pollution mitigation strategies and policy implications 715 

Mitigating antibiotic pollution requires a comprehensive strategy engaging multiple 716 

stakeholders, including governments, healthcare providers, the pharmaceutical industry, the 717 

agricultural sector, and the public. Addressing antibiotic pollution in already contaminated 718 

ecosystems requires a multifaceted approach that combines regulatory, technological, and 719 

community-based strategies. Primarily, implementing stricter regulations on antibiotic usage 720 

in agriculture and wastewater management is essential to limit further contamination. 721 

Additionally, adopting bioremediation techniques, such as using specific microbial strains that 722 

can degrade antibiotics or absorb residues, can help restore soil and water quality. Studies 723 

indicate that certain bacteria, like Pseudomonas putida, can effectively degrade tetracycline in 724 

contaminated soils (Chen et al., 2023; H. Liu et al., 2021). Phytoremediation, which utilizes 725 

plants to absorb and detoxify pollutants, can also be employed; plants like sunflower and 726 

willow have demonstrated effectiveness in extracting antibiotics from contaminated soils 727 

(Kafle et al., 2022). Furthermore, enhancing community awareness and engagement in 728 

monitoring and managing local water sources can lead to more sustainable practices. 729 

Integrating these strategies into a comprehensive management plan, alongside regular 730 

monitoring of antibiotic levels and microbial communities, will be crucial for mitigating the 731 

impacts of antibiotic pollution and promoting the recovery of affected ecosystems.  732 
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Similarly, mitigation strategies focusing on at the source are required to ensure safety and limit 733 

further pollution. Several crucial policy implications and mitigating tactics for antibiotic 734 

contamination (Muhaj & Tyring, 2023), are need. The need to promote appropriate and 735 

responsible use of antibiotics in both human and veterinary medicine, including the need to 736 

promote adherence to treatment guidelines (Muhaj & Tyring, 2023), educating healthcare 737 

professionals and the public on the risks of antibiotic overuse, improper disposal, misuse, and 738 

discouraging the use of antibiotics for non-bacterial infections (H. & Ripanda, 2019; Patel et 739 

al., 2023; Zhang et al., 2023). Mitigating antibiotic resistance is a complex challenge that 740 

requires a multifaceted approach involving various stakeholders, including healthcare 741 

professionals, policymakers, researchers, and the public. Establishment of collection programs 742 

for unused or expired medications and promoting safe disposal practices (Costanzo & Roviello, 743 

2023). The government, industries and other stake holders need to upgrade and optimize 744 

wastewater treatment plants to effectively remove antibiotics from effluents before discharge 745 

into water bodies, and if possible, abolish direct disposal to water bodies (Ventola, 2015). 746 

Promote and encourage adoption of sustainable farming practices that minimize the use of 747 

antibiotics in livestock and aquaculture (Aslam et al., 2018). The need to enforce and strengthen 748 

water quality regulations to limit the discharge of antibiotics from industrial sources, 749 

agricultural runoff, and sewage treatment plants (Aslam et al., 2018). This includes revising 750 

guidelines for quality monitoring and assessment to include strict limits on antibiotic 751 

concentrations in effluents and implementing monitoring programs to ensure compliance. 752 

Funders need to invest in research and development of innovative technologies for the removal 753 

or reduction of antibiotics from water, wastewater, and agricultural runoff. This may potentially 754 

be realized through fostering international collaboration and knowledge sharing to address 755 

antibiotics contamination on a global scale. The overall combination of regulatory measures, 756 

technological advancements, educational campaigns, and collaborative efforts is essential to 757 

mitigate antibiotics contamination. The negative effects of antibiotics on the environment can 758 

be lessened, protect ecosystem health, and address the worldwide problem of antibiotic 759 

resistance by putting these tactics and policy implications into practice.  760 

Conclusions 761 

Anthropogenic activities are a major driver of ecological degradation, contributing to pollution, 762 

declining ecosystem health, and amplified disease prevalence. Antibiotic pollution, in 763 

particular, has raised significant concerns about the health and sustainability of ecosystems in 764 

Sub-Saharan Africa. Although data on antibiotic contamination in the region is limited, 765 

evidence from studies conducted in surface water and near industries such as pharmaceutical 766 
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plants has revealed alarming levels of antibiotic residues in aquatic ecosystems. These 767 

pollutants, along with their metabolites and transformation products, can independently or 768 

synergistically degrade ecosystem health and intensify wildlife diseases. Reports also have 769 

shown antibiotic-resistant bacteria in aquatic wildlife, highlighting the potential for disease 770 

transmission between wildlife, livestock, and humans. This interaction exacerbates health risks 771 

and creates a ripple effect of harm across interconnected ecosystems. Effective management of 772 

aquatic ecosystems, particularly in protected areas and reserves, is critical to maintaining 773 

ecological balance and resilience. To address antibiotic pollution in Sub-Saharan Africa, a 774 

comprehensive and coordinated policy approach is vital. This may include identifying pollution 775 

hotspots. and balancing economic development with environmental protection by conducting 776 

risk assessment before approval of any developmental project. The need for raising public 777 

awareness on pathogenic microbes and environment that promote their production growth and 778 

survival, this will aid to decrease the burden of infectious diseases and hence antibiotic use. 779 

Initiate awareness program on proper use and disposal of antibiotics and other antimicrobials 780 

to the family level. Similarly, educate farmers on the responsible use of antibiotics in 781 

agriculture, emphasizing practices that prevent overuse and misuse, such as adhering to 782 

prescribed dosages, understanding withdrawal periods, and using antibiotics only, when 783 

necessary, under veterinary supervision. This will promote sustainable farming practices in the 784 

region. There is a need for improving waste management systems, and implementing robust 785 

monitoring frameworks for antibiotic residues and resistance this may include to make 786 

available equipments for analysis of these pollutants available. Similarly, the need for all 787 

clinical facilities to have equipped microbiological laboratory for microbiological testing, this 788 

will aid to eradicate the practice of empirical prescription of antibiotics. Similarly, improving 789 

waste management systems by ecofriendly techniques, but this requires research to tailor these 790 

methods to regional challenges. Fostering regional and international collaboration, and 791 

investing in research on antibiotic alternatives will further strengthen efforts. These actions will 792 

aid to mitigate the impacts of antibiotic pollution, support ecosystem health, and combat the 793 

growing threat of antimicrobial resistance, ensuring a sustainable future for both human and 794 

ecological well-being.  795 
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