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A B S T R A C T

Technology development has triggered the demand for the use of radio frequency electromagnetic fields (RF-
EMF). The growing demand for mobile communication, digital industrial evolutions and social services have
forced service providers to expand the wireless network technology with additional installation of base stations.
The increase in the use of RF-EMF for communication such as television (TV), radio, wireless services, internet
and cellular communication have also increased the exposure levels of human to RF-EMF. However, exposure RF-
EMF can have advance health effect to human and environmental radiation pollutions. RF - EMF exposure is
higher in areas where people are highly concentrated such as hospitals, market places, schools, universities,
colleges, shopping malls, than in any other region. Therefore, it is important to be concerned about the RF-EMF
exposure to public in order to ensure that the exposure is under the allowable limits. In this study, power density
values are measured at different locations in Dodoma, Dar es Salaam and Mwanza where the population density
is too high, to examine their power density levels. An Artificial Neural Network (ANN) and Multi Linear
Regression (MLR) models are developed to estimate the total power density values of different locations from RF-
EMF exposure sources. The results show that both models are significant with coefficient of determination R2 =
0.999 for MLR and R2 = 0.966 for ANN model. The results of these models show how the study are of significance
and valuable for monitoring and evaluating, hence the optimization of exposure dose from RF-EMF sources is
adhered.

1. Introduction

Radiofrequency electromagnetic fields (RF-EMF) are a type of non-
ionizing radiation (NIR) found on the electromagnetic spectrum,
shown in Fig. 1, covering the range of frequencies below 300 GHz. RF-
EMF are invisible waves and have been used for many years to trans-
mit information between an antenna and a device without the use of
wires. They can also be used in products that serve to heat things.

RF-EMF is a type of electromagnetic (EM) waves. EM waves are
defined as a propagating couple of an electric and magnetic field com-
ponents (Beckers et al., 2017). Many every day devices use RF-EMF to
transmit information wirelessly. RF-EMF are generated by a large
number of equipment used in medicine (e.g. magnetic resonance im-
aging), industry (e.g. heating and welding), domestic appliances (e.g.
Wi-Fi, hairdryers, micro-oven), security and navigation (e.g. radar and
RFID) and in telecommunications (e.g. radio transmitter, TV broad-
casting, Base transceiver station (BTS)) (Balmori, 2022; Röösli et al.,

2021). The 5G (5th Generation) mobile technology uses more fre-
quencies within the RF-EMF range, and is likely increasing the number
of transmitting sources (Di Ciaula, 2018).

The rapid advancements in science and technology have led to the
invention and widespread use of numerous electronic devices, which in
turn has significantly increased our exposure to electromagnetic waves
in daily life. In modern society, the explosive use of various electronic
devices has continuously heightened the chances of electromagnetic
wave exposure. Furthermore, the development of wireless communica-
tion technologies, including computers and smartphones, has become
indispensable for modern living.

Consequently, all living organisms on Earth are now experiencing
environmental changes and levels of exposure to electromagnetic waves
that are unprecedented in history (Kim et al., 2019). A six years pre-
dictions by Al-Falahy and Alani (2024) showed that global mobile data
traffic (GMDT) will also increase as shown in Fig. 2 which implies the
increase in the radiation level of electromagnetic waves as well as its
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exposure. Tinker et al. (2022) grouped RF-EMR exposures to humans
into three categories: occupational exposures - incurred by workers as a
result of their working activities involving NIR sources, medical expo-
sures - incurred by patients as part of their medical treatment and public
exposures - cover all exposures of people other than occupational and
medical exposures of patients. In public or general exposure, individuals
of all ages and of differing health statuses with different education level
and knowledge are exposed to RF-EMF (Nyakyi et al., 2024).

RF-EMF exposures to humans may have probable health effects
(Levitt et al., 2022). Although, Kim et al. (2019) argued that the effect of
RF-EMR on living creatures has been controversial due to studies with
contradicting results, Kim et al. (2019) cited many studies with con-
troversies regarding health effects due to RF-EMF exposure. Many
studies focused on cancer (Morgan et al., 2015), genetic damage (Kim
et al., 2008; Ruediger, 2009), neurological disease (Jiang et al., 2016;
Kim et al., 2017), reproductive disorders (Altun et al., 2018; Falzone
et al., 2011), immune dysfunction (Kazemi et al., 2015; Ohtani et al.,
2015), kidney damage (Kuybulu et al., 2016; Türedi et al., 2017), as well
as electromagnetic hypersensitivity (Gruber et al., 2018), and cognitive
effects (Son et al., 2018). Blackman (2009), Uche and Naidenko (2021)
showed that health risk assessment of non-ionizing radiation generated
science and policy debates for decades, particularly around the health
effects of RF-EMR used for wireless communications. Blackman and
Uche & Naidenko cited some biological effects of electromagnetic fields
reported by researches such as harm to fatal growth and development

(Azimzadeh and Jelodar, 2020; Erkut et al., 2016; Falcioni et al., 2018;
Azimzadeh and Jelodar, 2020; Erkut et al., 2016; Falcioni et al., 2018),
changes in heart rate variability (Szmigielski et al., 1998; Wallace et al.,
2020), changes in brain activity (Volkow et al., 2011; Wallace and Sel-
maoui, 2019), and elevated risk of several cancers (Luo et al., 2019;
2020; Sadetzki et al., 2008). Therefore, it is very essential to measure
and assess the environmental level of RF-EMF as its exposure has
detrimental effects on human health (Balmori, 2022; Gautam et al.,
2022; Olorunsola et al., 2021).

As studies have shown that exposure to RF-EMF has health effects, it
is therefore necessary that people or the population are protected from
unnecessary exposure. According to the International Commission on
Radiation Protection (ICRP), radiation protection involves the use of
three techniques, and these are justification of practices, optimization of
protection and the use of dose limits/levels (Osibote, 2020). The prin-
ciple of limitation requires that the exposure to any individual from NIR
sources other than medical exposure of patients should not exceed the
appropriate recommended limits (International Commission on
Non-Ionizing Radiation Protection, 2020). The principle of justification
requires that any decision that alters the radiation exposure situation
should do better than harm (Michael Moores, 2021). The principle of
optimization requires that all exposures should be kept as low as
reasonably achievable (ALARA), taking into account economic and so-
cietal factors, and with restrictions on individual exposure to limit im-
balances in dose distribution (Hansson, 2013).

Fig. 1. Ionizing and non-ionizing radiation spectrum (Yong et al., 2015).

Fig. 2. GMDT growth forecast (Al-Falahy and Alani, 2024).

C.P. Nyakyi et al. Environmental Challenges 18 (2025) 101066 

2 



To ensure humans are protected from radiation exposure, organiza-
tions, both international and country-wise, have been established that
set regulations, standards, guidelines and limitations of exposure. In-
ternational Commission on Non-Ionizing Radiation Protection (ICNIRP)
is recognized by the World Health Organization in this respect (Foster
et al., 2018). ICNIRP has set threshold values for power density,
expressed in W/m2, for radiation from different sources as indicated in
Table 1, which countries can customize accordingly.

Thus, we can say that RF-EMF is very useful in our daily life as it
provides or facilitates the delivery of different services which are very
important in human life. It promotes economic growth of the counties.
Unfortunately, exposure to RF-EMF radiation has health effects to
humans. In this respect, EMF has both benefits and effects and therefore
it is very important to optimize it to ensure it is used with less effects.

1.1. Statement of the problem

The growing demand for mobile communication has led the opera-
tors to expand the telecommunication infrastructure in different areas in
countries like Tanzania. Base transceiver stations (BTS), radio trans-
mitters and television transmitters, High Voltage Power Transmission
Lines (HVPTL) as well as millimetre antennas are installed even within
the vicinity of our premises (Nyakyi et al., 2013). People are also owning
and using devices producing radiation like microwave oven, mobile
phones, hair driers, CTR TVs etc (Nyakyi et al., 2024). This shows that
humans are exposed to RF-EMF and can possibly be affected by radiation
from those sources. Joseph et al. (2012) did an assessment of RF expo-
sures from emerging Wireless Communication Technologies at 311 lo-
cations, 68 indoor and 243 outdoor, spread over 35 areas in Belgium,
The Netherlands, and Sweden by performing narrowband spectrum
analyser measurements. Exposure ratios for maximal electric field
values, with respect to ICNIRP reference levels, range from 0.5 %
(WiMAX) to 9.3 % (GSM900). Exposure ratios for total field values were
seen to vary from 3.1 % for rural environments to 9.4 % for residential

environments (Joseph et al., 2012). Kurnaz (2016) measured electric
field strength (E) levels on Ondokuz Mayıs University’s Kurupelit
Campus and Faculty of Medicine Hospital in Samsun, Turkey between
years 2013 and 2015 and the results showed that the measured E levels
are far below the limits that are determined by ICNIRP. Then, Kurnaz
(2016) proposed new models to estimate main distribution of total Frei
et al. (2009) developed a multivariable regression model (MRM) to
predict personal mean RF-EMF exposure when being at home by col-
lecting personal RF-EMF exposure measurements of 166 volunteers from
Basel, Switzerland. The predictors identified were propagation model,
housing characteristics, ownership of communication devices (wireless
LAN, mobile and cordless phones) and behavioural aspects such as
amount of time spent in public transports (Frei et al., 2009).

As RF-EMF radiation is very beneficial, it is essential to optimize it to
ensure it has less effects to human health. This means optimization of
EMF protection will predict and assist on the technique for reducing the
exposure doses as low as possible, while taking into consideration social
and economic balances.

1.2. Objective of the study

The objective of this research was to study the optimization of RF-
EMF radiation exposure to the public using Artificial Neural Network
and multi linear regression model in order to predict the radiation dose
in the environment. TV broadcasting stations, Radio transmitters, Base
Transceivers Stations (common name is cellular towers), Universal
Mobile Telecommunications Service (UMTS) and Wireless Local Area
Network (W-LAN) are radiation sources covered by this research. The
research is of great importance as it ensures the environment are safe
when exposed to radiation i.e. the public can absorb minimum dose.

1.3. Optimization of radiation dose

The optimization of RF-EMF radiation dose can be viewed as a pro-
cess of balancing risks against benefits. Optimization examines the
procedural and operational practices while the public is exposed to RF-
EMF radiation during their daily operations and plays an important role
in reducing the dose to the environment (Seeram et al., 2013). Opti-
mization may involve reducing or minimizing exposure factors such as
Exposure Index (EI), Specific Absorption Rate (SAR), EMF strength,
Power Density radiated, transmission time reduction, beamforming
technique and data usage reduction by RF-EMF sources (Ajibare and
Ramotsoela, 2021; Vermeeren et al., 2015).

Several works in the literature have investigated the optimization of

Table 1
ICNIRP safety limits for different frequency bands (Ahlbom, 2001).

Sources Frequency Band (MHz) Power Density (W/m2)

FM Radio 87–108 2.08
VHF Band TV 174–230 2.08
GSM 900 930–960 4.46
GSM 1800 1805–1880 8.57
UMTS 2110–2170 9.63
W-LAN 2400–2483.5 9.08

Fig. 3. Narda 3006 SRM with probe and wooden tripod stand.
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RF-EMF using different factors. Ajibare and Ramotsoela (2021) inves-
tigated the effect of minimizing the exposure index and SAR induced in
fifth generation wireless networks and its impact on the quality of ser-
vice of the users in the network by proposing a power control algorithm
that solves an optimization problem. Plets et al. (2014) presented a
study on whole-body and localized SAR and dose prediction by
considering absorbed doses, measured SAR values and time duration of
the exposure. Plets et al. concluded that SAR is lowered when more base
stations with lower transmit power are installed. (Stephan et al., 2014)
minimized EMF exposure by considering quality of services (QoS) and
network capacity, taking into consideration the impact of user distance
from the access points (AP) and inter-site distances on the RF-EMF
sources. Stephan et al. concluded that the transmitting power de-
creases when the RF-EMF source brings access points closer to the user.
When dealing with wireless networks, user EMF exposure can be
reduced by introducing efficient power control and handover manage-
ment (Tesanovic et al., 2014). Another scholar, (Sambo et al., 2014),
proposed a user scheduling/power allocation scheme to minimize the
EMF exposure of users subject to transmitting a target number of bits.

Since the RF-EMF sources are of many benefits and the development
of any country depends on it for economic growth, hence the installation
of RF-EMF infrastructure should be given the attention to foreseen the
hazards viz the profits. The current study considered the effects of power
density in the general public (environments) by involving the following
RF-EMF sources: FM transmitters, TV broadcasting, Cellular towers
(GSM), UMTS and Wireless-LAN.

2. Materials and methods

2.1. Data collection

To measure the power density level, the study employed the Narda
3006 Selective Radiation Meter (SRM) equipment as shown in Fig. 3.
This equipment is connected with isotropic antenna, which is capable of
receiving signals from all directions. The isotropic antenna has a range
of 27 MHz to 3 GHz for FM transmitters, TV broadcasting, Cellular
towers (GSM), UMTS and Wireless-LAN. The SRM equipment and the
antenna were connected by a 1.5 m long coaxial cable, with the antenna
fixed at the height of 1.5 m above the ground using a tripod stand. The
tripod stand is of a wooden material to help avoid the tripod from being
a conductor and hence prevent duplication of signals received. The
measurements were divided into several frequency bands based on
services/sources shown in Table 1. The measured data were transferred
to the computer via SRM software tool. While taking measurements, the
study observed both the national and international standards. The SRM
equipment incorporates the ICNIRP Safety Restriction Standards. During
measurement, the specifications from SRM equipment were selected and
used for the given study. Resolution bandwidth (RBW) settings used
were 200 kHz for FM, GSM, UMTS and W-LAN. Readings of power
densities, both actual and maximum values, were captured after every 6
min in different locations.

2.2. Site selection

The sites for measurements were chosen by considering areas with
high population and possibility of high level of RF-EMF radiations such
as shopping malls, crowded residential areas, colleges, bus terminals,
market places and hospitals. Measurement results presented in this
study were taken from three regions in Tanzania, i.e., Dodoma, Mwanza
and Dar es Salaam. The regions of study were chosen based on the
physical and geographical characteristics as well as natural and vege-
tation cover. In Dodoma, most of the places are flat area and semi-arid,
the urban is not congested with houses. Mwanza region is dominated
with rocks, hills and in some places, houses are close to each other while
Dar es Salaam is full of houses and having high humidity. Measurements
of power density levels were taken at 150 different sites in the three

regions.

2.3. EMF exposure model development

In this study, twomathematical models were developed: the multiple
linear regression (MLR) and Artificial Neural Network (ANN) model and
their outputs were compared. The linear model has been created based
on multiple linear regression analysis, while the non-linear model has
been built using Artificial Neural Networks (ANN).

2.4. Multi linear regression model

A multi linear regression (MLR) model is developed and optimised
using the least square method in order to predict the total power density
from the RF-EMF sources. MLR is one of the well-known techniques
which can help to establish a relationship between the predictors and
the target value. The total power density (TotalPD) is the dependent
variable, while the individual power densities from RF-EMF radiation
sources: TV band transmitter named as TVBand, FM Radio transmitter
named FMRadio, BandIV (DVB-T) named as Band4V, Band V (DAB)
named as Band5A, GSM, L-Band (DAB) named as LBandA, UMTS-TDD
named as UT, UMTS DL named as UD, and W-LAN named as WLAN
are the independent variables. Based on the sources of exposure, the
multi linear model is of the form:

TotalPD = β0 +

(
∑9

i,j=1
βiPDj

)

(1)

Where;
PD1 = TVBand, PD2 = FMRadio, PD3 = Band4V, PD4 = Band5A,

PD5 = GSM,PD6 = LBandA, PD7 = UT, PD8 = UD, PD9 =WLAN, β0
is a constant value, β1, ..., β9 are coefficients of independent variable.

Then,

∑9

i,j=1
βiPDj = β1 x TVBand + β2 x FMRadio + β3 x Band4V

+ β4 x Band5A+ β5 x GSM + β6 x LBandA+ β7 x UT

+ β8 x UD+ β9 x WLAN
(2)

Substituting Eq. (2) into (1) to obtain

TotalPD = β0 + β1 x TVBand + β2 x FMRadio + β3 x Band4V

+ β4 x Band5A+ β5 x GSM + β6 x LBandA+ β7 x UT

+ β8 x UD+ β9 x WLAN
(3)

The MLR model then provides the predicted value of total power
density as in Eq. (3).

2.5. Artificial Neural Network model

Artificial Neural Networks (ANN) are information processing sys-
tems that are based on performance characteristics of biological neural
networks. ANN are developed as generalizations of mathematical
models of neurons in human brain. Several ANN models have been
developed for various purposes and used in different fields. The multi-
layer feed-forward ANN is the most commonly used, and it is used in our
study. The multilayer perceptron (MLP) is an Artificial Neural Network
type which uses at least one layer between the input and output layer.
MLP can solve non-linear problems, and so they are the most popular
type of ANN widely used.

RF-EMF Artificial Neural Network model with nine input layers,
several hidden layers, and one output layer is developed in this study.
The number of nodes of the input layers correspond to the number of
variables describing the attributes being tested, while the number of
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neurons in the output layer equals the number of classes. In particular,
our model has nine (9) inputs in the input layer which are RF-EMF
sources.

The number of hidden layers and the number of neurons depend on
the difficulty of the task and the amount of training data. Each neuron in
the hidden layer is connected to output layer by an associated numerical
weight which controls the amount of the signal that passes between
them. In our model, the estimation takes place in the hidden layer and
the total power density is estimated in the output layer as shown in
Fig. 4. The model is verified on the basis of the determination coefficient
(R2).

Fig. 4, illustrates a multi-layer neural network used for predictive
modelling based on input data from various frequency bands, high-
lighting its structure and the flow of information through the network. It
comprises input layers, output layers, hidden layers and the connections.
Input layers are represented by nodes corresponding to different fre-
quency bands which are TV BAND, FM-Radio, Band IV(DVB-T), Band V
(DAB), GSM, L-Band (DAB), UMTS-TDD, UMTS-DL and W-LAN.

An ANN Model equation is given by

Total − PD = f

(
∑9

i=1
βi PDi + K

)

(4)

where Total − PD, f, K, βi and PDi are the output of the neuron, acti-
vation function, bias term, weight and input value, respectively. Fig. 4
shows the hidden layers in middle section contain several inter-
connected nodes, they perform computations on the input data to
extract patterns and features relevant for predicting the output. Also,
they have number of nodes (circles) connected by lines indicating the
flow of information and weights between the nodes. The output layer is a
single node labeled “Total-PD”. This node aggregates the information
processed by the hidden layers to produce the final prediction. The
connection lines of the nodes represent the weights and biases in the
neural network which are adjusted during the training process to
minimize prediction errors.

3. Results and discussion

3.1. MLR model results and discussion

The MLR model was optimized using least square optimization

method and the results of the model are shown in Tables 2 and 3.
Consider Table 3, the model identified several significant predictors,

including TV Band, FM Radio, BandIV (DVB-T), BandV (DAB), GSM,
UMTS-TDD, UMTS-DL, and W-LAN, all of which have p-values below
0.05, indicating their statistical significance. Conversely, L-Band A, with
a p-value above 0.05, is not statistically significant in this model. Most
predictors have coefficient values close to 1, suggesting they exert a
similar magnitude of effect on the dependent variable. The standard
errors are generally low, indicating precise estimates, except for L-Band
A and Band5A, which have higher standard errors. High t-values for
significant predictors reflect strong relationships with the dependent
variable. These results imply that most predictors are important, except
for L-Band A, which could be excluded in future model refinements due
to its insignificance. Overall, the model seems to fit well, demonstrated
by the high t-values and low p-values for most predictors.

Hence Eq. (3) can be re-written as:

Fig. 4. The layers of Artificial Neural Network model.

Table 2
MLR model summary.

Dep. Var Total PD R-squared 0.999

Model OLS Adj. R-squared 0.999
Method Least Squares No. Samples 150

Table 3
Statistics results for MLR model.

Predictors coef std err t p>|t|

Const 178.9026 147.774 1.211 0.228
TV BAND 1.0168 0.028 36.833 0.000
FM-Radio 0.9979 0.008 130.507 0.000
Band IV (DVB-T) 1.0103 0.057 17.687 0.000
Band V (DAB) 1.0633 0.316 3.362 0.001
GSM 1.0149 0.077 13.223 0.000
L-Band (DAB) 0.6082 0.412 1.475 0.143
UMTS-TDD 0.9762 0.149 6.573 0.000
UMTS-DL 1.0456 0.101 10.346 0.000
W-LAN 0.9916 0.061 16.179 0.000
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TotalPD = 178.9026+ 1.0168 x TVBand+ 0.9979 x FMRadio

+ 1.0103 x Band4V+ 1.0633 x Band5A+ 1.0149 x GSM

+ 0.6082 x LBandA+ 0.9762 x UT+ 1.0456 x UD

+ 0.9916 x WLAN
(5)

In Eq. (5) the value of coefficients for independent variables sources
are presented in Table 3.

In Fig. 5, scatter plot displays the relationship between the actual
total power density and the predicted total power density from the MLR
model. The blue dots represent individual data points with actual total
power density on the y-axis and predicted total power density on the x-
axis, where the line of perfect fit is represented by solid red line, the
actual values equal to the predicted values (Y = X)

In analyzing the results, Fig. 6 shows both lines follow a similar
upward trend, indicating that the model’s predictions generally track
the actual values. Where the blue line represents the actual total power
density value and red dashed line represents the predicted total power
density values. For the most part, the predicted values closely follow the

actual values, demonstrating the model’s accuracy. The predictions are
fairly consistent with the actual values across the entire range of the
data. The model seems to perform well both at lower and higher values
of total power density.

In case of correlation, the close alignment between the two lines
suggests a high correlation between the actual and predicted values, this
shows that the model is effective. Across different levels of total power
density, the model shows robustness as it is maintaining accuracy
without significant bias toward any particular range. It may provide
room for fine-turning the model to improve its predictions further since
there are slight divergences at certain points. This plot is an effective
way to visualize the performance of the model, demonstrating its
strengths and highlighting areas for potential enhancement.

3.2. ANN model results and discussion

To develop ANN model, the datasets were divided into two subsets:
the training set (a set of samples used to adjust the network weights),
and the test set (a set of samples used only to assess the performance of
the neural network). The ANN model was trained using selected

Fig. 5. Actual viz predicted total power density for MLR model.

Fig. 6. Total power density level viz sample index.
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parameters from the data set and was subsequently validated using an
independent data set. The input layer is made up of 9 neurons which is
the number of the independent variables, and for this particular case is

the RF-EMF radiation sources. We have added a hidden layer with 10
neurons just for modeling purposes. Since there is one dependent vari-
able, then 1 neuron is the output layer as in Fig. 4.

The ANN model result summary is shown in Table 4. The sum of
squares function was used during the network training process.

To determine the accuracy of the ANN model in calculating and
predicting the total power density (Total-PD), the coefficient of deter-
mination R2and the mean squared error (MSE) were determined. The R2
of the ANN model was 0.966 implying that the model is able to predict
96.6% of the dependent variable, and the MSE was 130.245. The more
accurate the model, the larger the R2 and the smaller the MSE value. The
model was repeated several times to ensure that we obtain the best
representation, the graph of best parameter verses accuracy is shown in
Fig. 7.

Table 4
ANN model results.

Model: "sequential_72"

Layer (type) Output Shape Param #
Hidden (Dense) (None, 10) 100
Output (Dense) (None, 1) 11

Total params: 335 (1.31 KB)
Trainable params: 111 (444.00 B)
Non-trainable params: 0 (0.00 B)
Optimizer params: 224 (900.00 B)

Fig. 7. Best parameters vs. accuracy.

Fig. 8. Predicted total PD viz actual total PD for ANN model.
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Fig. 7 is a plot which proposes that, tuning the parameters can lead to
significant changes in accuracy, and there seems to be a predictable
pattern to these changes. Identifying the exact nature of these parame-
ters and their impact on the ANN model performance could help opti-
mize for higher accuracy.

In conclusion, the graph of the actual and predicted total power
density obtained through the ANN model for training datasets is pre-
sented in Fig. 8. The scatter plot displays a positive correlation between
predicted and actual total power density, suggesting that the model
generally predicts the power density reasonably well. The analysis in-
dicates that the ANN model has a good overall performance with some
room for improvement. Althoughmost predictions are close to the actual
values, addressing the discrepancies and outliers can help enhance the
model’s reliability and accuracy.

4. Conclusion and recommendations

In this study we employ machine learning process to optimize public
exposure to RF-EMF radiations using least-square optimization method
in MLR model and ANN model for the multilayer perceptions. The nine
(9) sources of RF-EMF radiations were used as inputs to predict the total
power density which was then compared with the measured total power
density. The accuracy of the prediction in both models was evaluated
and measured by the coefficient of determination (R2 value). For the
MLR model, the R2 = 0.999 showing that 99.9% of the total power
density could be predicted by the inputs used. The R2of the ANN model
was 0.966 implying that the model is able to predict 96.6% of the
dependent variable. Therefore, both MLR model and ANN model can
calculate and predict the total power density with high accuracy. The
result of the MLR and ANN model have an acceptable prediction
performance.

Measurements in all points indicate that the maximum exposure is
below the national and international standards. Even if the measure-
ment results show that the RF-EMF levels are below the permitted limits,
it is important to regularly measure the radiation levels from RF-EMF
sources to avoid the possible harmful effects of RF-EMF radiation on
human in the long-term exposure. Effective measurement strategies
should be developed to reduce the health risks of the RF-EMF radiations.
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Effects of long-term pre-and post-natal exposure to 2.45 GHz wireless devices on
developing male rat kidney. Ren. Fail. 38 (4), 571–580.

Levitt, B.B., Lai, H.C., Manville, A.M., 2022. Effects of non-ionizing electromagnetic
fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. Rev.
Environ. Health 37 (1), 81–122.

Luo, J., Deziel, N.C., Huang, H., Chen, Y., Ni, X., Ma, S., Udelsman, R., Zhang, Y., 2019.
Cell phone use and risk of thyroid cancer: a population-based case–control study in
Connecticut. Ann. Epidemiol. 29, 39–45.

Luo, J., Li, H., Deziel, N.C., Huang, H., Zhao, N., Ma, S., Ni, X., Udelsman, R., Zhang, Y.,
2020. Genetic susceptibility may modify the association between cell phone use and
thyroid cancer: a population-based case-control study in Connecticut. Environ. Res.
182, 109013.

Michael Moores, B., 2021. On the justification of justification in radiation protection -
legal and sociological considerations. Radiography 27 (2), 704–708. https://doi.org/
10.1016/j.radi.2020.10.007.

Morgan, L.L., Miller, A.B., Sasco, A., Davis, D.L., 2015. Mobile phone radiation causes
brain tumors and should be classified as a probable human carcinogen (2A). Int. J.
Oncol. 46 (5), 1865–1871.

Nyakyi, C., Mrutu, S., Sam, A., Anatory, J., 2013. Safety zone determination for wireless
cellular tower-a case study from Tanzania. IJRET: International Journal of Research
in Engineering and Technology.

Nyakyi, C.P., Mpeshe, S.C., Dida, M.A., 2024. Assessment of public awareness on the
effects of exposure to non-ionizing radiation sources in Tanzania. J. Radiat. Res.
Appl. Sci. 17 (1), 100770.

Ohtani, S., Ushiyama, A., Maeda, M., Ogasawara, Y., Wang, J., Kunugita, N., Ishii, K.,
2015. The effects of radio-frequency electromagnetic fields on T cell function during
development. J. Radiat. Res. 56 (3), 467–474.

Olorunsola, A.B., Ikumapayi, O.M., Oladapo, B.I., Alimi, A.O., Adeoye, A.O.M., 2021.
Temporal variation of exposure from radio-frequency electromagnetic fields around
mobile communication base stations. Sci. Afr. 12, e00724.

Osibote, O.A., 2020. Introductory chapter: radiation exposure, dose and protection. In:
Ionizing and Non-ionizing Radiation, 3. IntechOpen.

Plets, D., Joseph, W., Vanhecke, K., Vermeeren, G., Aerts, S., Deruyck, M., Martens, L.,
2014. Whole-body and localized SAR and dose prediction tool for indoor wireless
network deployments. In: Proceedings of the 2014 11th International Symposium on
Wireless Communications Systems (ISWCS), pp. 328–332.
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Sambo, Y.A., Héliot, F., Imran, M.A., 2014. A user scheduling scheme for reducing
electromagnetic (EM) emission in the uplink of mobile communication systems. In:
Proceedings of the 2014 IEEE Online Conference on Green Communications
(OnlineGreenComm), pp. 1–5.

Seeram, E., Davidson, R., Bushong, S., Swan, H., 2013. Radiation dose optimization
research: exposure technique approaches in CR imaging–A literature review.
Radiography 19 (4), 331–338.

Son, Y., Kim, J.S., Jeong, Y.J., Jeong, Y.K., Kwon, J.H., Choi, H.D., Pack, J.K., Kim, N.,
Lee, Y.S., Lee, H.J., 2018. Long-term RF exposure on behavior and cerebral glucose
metabolism in 5xFAD mice. Neurosci. Lett. 666, 64–69.

Stephan, J., Brau, M., Corre, Y., Lostanlen, Y., 2014. Joint analysis of small-cell network
performance and urban electromagnetic field exposure. In: Proceedings of the 8th
European Conference on Antennas and Propagation (EuCAP 2014), pp. 2623–2627.

Szmigielski, S., Bortkiewicz, A., Gadzicka, E., Zmyslony, M., Kubacki, R., 1998.
Alteration of diurnal rhythms of blood pressure and heart rate to workers exposed to
radiofrequency electromagnetic fields. Blood Press. Monit. 3 (6), 323–330.

Tesanovic, M., Conil, E., De Domenico, A., Aguero, R., Freudenstein, F., Correia, L.M.,
Bories, S., Martens, L., Wiedemann, P.M., Wiart, J., 2014. The LEXNET project:
wireless networks and EMF: paving the way for low-EMF networks of the future.
IEEE Veh. Technol. Mag. 9 (2), 20–28.

Tinker, R., Abramowicz, J., Karabetsos, E., Magnusson, S., Matthes, R., Moser, M.,
Niu, S., O’Hagan, J., Van Deventer, E., 2022. A coherent framework for non-ionising
radiation protection. J. Radiol. Prot. 42 (1), 10501.
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