
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Computational and Communication Science Engineering PhD Theses and Dissertations [CoCSE]

2016

Mathematical Modelling of Intra and

Inter Dynamics and Control of Yellow

Fever in Primate and Humna Populations

Kung’aro, Monica

The Nelson Mandela African Institution of Science and Technology

https://doi.org/10.58694/20.500.12479/57

Provided with love  from The Nelson Mandela African Institution of Science and Technology



MATHEMATICAL MODELLING OF INTRA AND INTER DYNAMICS

AND CONTROL OF YELLOW FEVER IN PRIMATE AND HUMAN

POPULATIONS

Monica Kung’aro

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mathematical and Computer Science and Engineering of the

Nelson Mandela African Institution of Science and Technology

Arusha, Tanzania

April, 2016



ABSTRACT

A deterministic mathematical model was formulated using non-linear ordinary differential e-

quations to gain an insight of dynamics of yellow fever (YF) between primates, human beings

and Aedes mosquito for the purpose of controlling the disease. Basic reproduction number,

R0, was computed and its sensitivity analysis with respect to epidemiological parameters was

performed to study the effect of model parameters to R0.

Results showed that R0 is most sensitive to daily biting rate of mosquitoes, recruitment rate of

vectors, probability of transmission of infection, recruitment of unvaccinated immigrants and

the incubation period for both vector and humans. Thus, for the minimization of YF transmis-

sion, these parameters should closely be monitored. Stability analysis of disease-free equilib-

rium (DFE) and endemic equilibrium (EE) points were performed to study perseverance and

condition necessary for disease interruption and control. Results showed that the DFE is locally

asymptotically stable if the rate of new infection from infected monkey to vector is less than

unity, and is globally asymptotically stable if the rate of new infection from infected vector to

human is less than unity. Lyapunov stability theory and LaSalles Invariant Principle were used

to investigate stability of EE. Results show that EE is globally asymptotically stable whenever

R0 > 1. To assess the impact of control measures on YF dynamics, we derived and analysed

the necessary conditions for optimal control using optimal control theory. Results show that

multiple optimal control strategy is the most effective to bring a stable disease-free equilibrium

compared to single and two controls. However, spray of insecticides alone was not effective

without personal protection, and optimal use of personal protection alone is beneficial to min-

imize transmission of the infection to the community. Furthermore, cost-effectiveness analysis

of the optimal control measures was considered. We used incremental cost-effectiveness ratio

to investigate and compare the costs required against the health benefits achieved between two

or more alternative intervention strategies that compete for the same resource. Results showed

that combination of all strategies is the most cost-effective compared to others.
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CHAPTER ONE

General Introduction and Background

Introduction

This chapter describes the general introduction of the study. It mainly focuses on the back-

ground of the study, where yellow fever has been explained in detail, its transmission cycle

in Africa and South America is explained, epidemiology and symptoms of yellow fever is ex-

plained, justification of the research, statement of the problem, research objectives, research

questions, methodology used to achieve each specific objective and significance of the study

are explained.

1.1 Background Information

Yellow fever has been one of the vector borne viral infection of humans and constitute a major

public health problem in Africa (Monath, 1991; Barrett and Higgs, 2007). After several decades

of relative calm, its outbreak has re-emerged in Africa posing an immediate risk to the affected

populations across the continent (Briand et al., 2009). The disease has brought undefinable

hardship and great misery among different populations in Africa when it affects a sufficient

number and density of susceptible hosts and where the environment facilitates transmission by

the principal Aedes (Stegomyia) aegypti mosquito vector (Tomori, 2002; Barrett and Higgs,

2007).

A country is considered endemic for YF or its potential, due to the presence of both competent

vectors (transmitters of the infection) and the yellow fever virus in monkeys. According to

Robertson et al. (1996), a dramatic resurgence of yellow fever has been occurred in both sub-

Saharan Africa and South America since the 1980s and it was one of the stumbling blocks to

economic and social development. While complete eradication is not feasible currently due

to the wildlife reservoir, large vaccination activities done in Africa during the 1940s to 1960s
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reduced yellow fever incidence for several decades (Garske et al., 2014). However, after a

period of low vaccination coverage, YF has been resumed in the late 1980s and early 1990s.

Every health official undertaking YF surveillance at the ports of entry, should understand the

basic information regarding the disease and work under the agreed standard operating proce-

dures. As per Bae et al. (2005) increasing migration, accelerating urbanization, and improved

travel infrastructures are global trends that increase the risk of YF spreading to parts of the

world where the disease had disappeared.

The under reporting of YF cases in the respective regions and lack of international interest leads

to an underestimation of the constant danger in these areas. Non-vaccinated travelers without

the effective protection of the Yellow Fever Virus (YFV) vaccine take a high risk as demon-

strated by several imported cases of the recent years (Bae et al., 2005). Disease outbreak in

towns and in mixed populations with foreigners may be more serious because of high densities

of mosquito vectors and high population densities.

YF is endemic in tropical and subtropical areas of Africa and South America (Figure 1.1), even

though the main transmitting vector, Aedes aegypti occurs also in Asia, in the Pacific and in the

Middle East. According to Tomori (2002), the resurgence of YF in Africa and failure to control

the disease has resulted from a combination of several factors, including:

• collapse of health care delivery systems

• lack of appreciation of the full impact of YF disease on the social and economic devel-

opment of the affected communities

• insufficient political commitment to YF control by governments of endemic countries

• poor or inadequate disease surveillance

• inappropriate disease control measures and
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• preventable poverty coupled with misplaced priorities in resource allocation

Figure 1.1: Global geographic distribution of yellow fever. Source: Barnett (2007); CDC
(2011a)

The first recorded epidemic of YF in Africa occurred among British troops in St. Louis de Sene-

gal in 1778 (Haddow, 1969), although major outbreaks of YF were subsequently documented

in West Africa. In East Africa, YF epidemics have been historically rare, but in 1959, small

outbreaks occurred on the Sudan-Ethiopian border, which subsequently spread along the Omo

River valley causing a major epidemic between 1960 and 1962 (Monath et al., 1989; Haddow,

1969).

1.2 Epidemiology and Symptoms of YF

YFV is the prototype member of the genus Flavivirus, the virus of the family Flaviviridae (from

the Latin flavus, meaning yellow) which is transmitted through the bite of an infected female

yellow fever mosquito called Aedes aegypti (Ellis and Barrett, 2008; Robertson et al., 1996;
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Cliff et al., 2004). In Africa, the disease is maintained endemically in monkey-Ae. Africanus

jungle transmission cycles and may periodically emerge in intermediate/ savanna cycles. In

America, Haemogogus species acts as the main vector (Ellis and Barrett, 2008; Cliff et al.,

2004). Following the bite of an infected mosquito, YFV replicates and spreads to other areas

of the body.

Figure 1.2: YF transmission cycle in Africa. Source: Reproduced from CDC (2011b); Barrett
and Higgs (2007)

In America, two types of epidemiological cycles are in operation: the jungle and the urban,

while in Africa YFV has three transmission cycles: jungle (sylvatic), intermediate (savan-

nah), and urban (Figure 1.2) (Barrett and Higgs, 2007; WHO, 1986). Studies showed that

monkeys are the primary hosts and the sources of YFV in Africa, that there were monkey-

Ae., africanus-monkey cycles in the forests, and a monkey and human cycle involving another

mosquito species, Ae. simpsoni, in villages (Ellis and Barrett, 2008; Rogers et al., 2006; Gubler,

2004; Tomori, 2002). Aedes africanus is the most dangerous vector of YF in forested areas of

Africa and has made many countries of Africa to be remoteness. These vectors are predomi-

nantly involved in monkey-to-human transmission of YFV in forested areas.
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The jungle (sylvatic) cycle involves transmission of the virus monkeys and mosquito species

found in the forest canopy. The virus is then transmitted by mosquitoes from monkeys to

humans when humans are visiting or working in the jungle. An intermediate (savannah) cycle

involves transmission of virus from mosquitoes to humans living or working in jungle border

areas. In this cycle, the virus can be transmitted from monkey to human or from human to

human via mosquitoes. The urban cycle involves transmission of the virus from human to

human by mosquitoes, primarily Aedes aegypti (Tomori, 2002; WHO, 1986). The virus is

usually brought to the urban setting by a vermin human who was infected in the jungle or

savannah.

Figure 1.3: YF transmission cycle in South America. Source: Reproduced from CDC (2011b);
Barrett and Higgs (2007)

In human body YF begins after an incubation period of 3 to 5 or 6 days, during which there are

generally no symptoms identifiable to the host. After that time, a person infected begins with

an abrupt onset of symptoms, including fever and chills, intense headache and lower backache,

muscle aches, nausea, joint pain, renal failure, jaundice and haemorrhaging (Monath, 2001).

In about 15% of the cases, the disease progresses to a more severe form with haemorrhagic

manifestations.
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Africa contributes more than 90% of the global YF morbidity and mortality, regardless of a

safe and effective vaccines that are available like 17D (Ellis and Barrett, 2008; Robertson et al.,

1996). Thus, it remains a significant public health concern in a region where majority of the

population remains unvaccinated. Again, there are approximately 130,000 - 200,000 cases with

fever and jaundice, including 30,000 - 78,000 deaths, due to YF yearly reported in the literature

(Garske et al., 2014; Tolle, 2009; Ellis and Barrett, 2008), whereby many cases of these are

from Africa.

Also, WHO (2013) estimates the burden of YF in Africa as 84,000 - 170,000 severe cases and

29,000 - 60,000 deaths for the year 2013. This is in accordance with a recent analysis study

of African data sources. Thus, without vaccination, the effect would be much higher in the

coming years.

1.3 Rationale/Justification of the Research

Since the mid-20th century, the global yellow fever risk map has depicted the best estimate

of the distribution of the virus and has been used to guide vaccination recommendations for

travellers (Jentes et al., 2011). Despite the availability of a safe and effective vaccine and

detailed knowledge of the fundamental disease ecology and epidemiology, YF has remained a

significant public health threat in many tropical areas of sub-Saharan Africa (Ellis and Barrett,

2008). The reasons why there has been such a dramatic global resurgence of YF epidemic and

the emergence of YFV are not fully understood (Gubler, 2004). However, some reasons were

explained by Tomori (2002) although the epidemic still exist.

As from Tomori (2002), YF disease can be understood and controlled in Sub-Saharan Africa

and Africa at large within the coming ten to fifteen years, if African government seize the

initiative for YF control by declaring an inflexible resolution to control the disease. However

this is not the case, until now. As noted by WHO (1986) strong satiating measures are required
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for the prevention and control of YF, particularly during the period of intoxication (period

that cause someone to lose control of his/her faculties) when obvious clinical manifestations

appear. A serious problem in the prevention and control of YF is the lack of serious and quick

recognition of the disease.

However, most local hospitals are not well equipped with the intensive care facilities that might

be necessary for YF patients. Thus, preventive measures need to be in place to rescue the situ-

ation. Again clinical diagnosis is often delayed even in the presence of typical illness because

most physicians and many medical students are not familiar with the disease (Tomori, 2002).

Hence, proper information campaign concerning the disease is required.

Epidemiological mathematical models can be used in predicting and analyzing the emergence,

spread and control of infectious diseases. As per Liu et al. (2013), these models are very critical

to the studying of virus spreading dynamics which can state clearly the origination, evolution

and effects of viruses. Also, they can help in figuring out decisions (policy-making) that are of

significant importance in a way that human reasoning cannot before time when an outbreak is

forecasted (Tumwiine et al., 2007), which results to implementation of mitigation strategies for

early outbreak control.

1.4 Statement of the Problem

Some diseases like measles, influenza, cholera, YF, and tuberculosis have approved medical

treatments options and/or vaccine. Surprisingly, it remains a puzzle why diseases for which

treatment and/or vaccine are available, are still endemic in some of our societies particularly in

Tanzania. Many mathematical models have been developed to describe and analyse dynamics

and control of vector borne diseases like malaria and dengue but YF is not well described and

analysed by mathematical models. The few mathematical models developed, did not account

for monkeys as one of the host for YF epidemic. This dissertation research uses a mathematical
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model in addressing and analysing transmission dynamics of YF between and within two hosts

and finding affordable optimal control strategies for mitigation.

1.5 Research Objectives

1.5.1 General Objective

The main research objective is to formulate and analyse mathematical models that can be used

to study transmission dynamics and find control strategies of YF disease.

1.5.2 Specific Objectives

The research study is based on the following specific objectives:

1. To formulate mathematical models for transmission dynamics and control strategies of

YF disease.

2. To analyse and assess transmission dynamics and the impact of YF infection through

mathematical modelling so as to find necessary conditions for disease interruption and

control.

3. To determine control strategies for minimizing the infection from the population such as

personal protection, health educational campaign, insecticides or combinations.

4. To analyse the cost-effectiveness of the optimal control measures of YF.

1.6 Research Questions

The following fundamental questions guide our study:

8



1. Can mathematical models be formulated and used to explain transmission dynamics and

optimal control strategies of YF?

2. (a) Why is YF still a significant public health problem in Tanzania?

(b) What is the impact and necessary conditions for YF infection transmission dynamics

to the population?

3. Are there any control strategies that can minimize transmission of the infection from the

population? Or what are the options available and affordable to control yellow fever in

developing countries particularly Tanzania?

4. What is the most cost-effective optimal control strategy?

1.7 Methodology

• Objective 1:

Objective 1 is achieved by formulating a system of non-linear ordinary differential equa-

tion with two hosts and a vector to explain transmission dynamics of YF. Later the system

is extended to include control mechanisms whereby personal protection and educational

campaign to human host and spray of insecticides to vector were the control mechanisms

considered.

• Objective 2:

To achieve objective 2, the formulated system of non-linear ordinary differential equa-

tion is solved to determine equilibrium points (DFE and EE) of the system and the basic

reproduction number. Stability of the equilibrium points is established whereby local sta-

bility of DFE is determined by trace-determinant approach of Jacobian Matrix and global

stability by the approach of Kamgang and Sallet (2008) and Dumont et al. (2008) and the

idea of stable Metzler matrix. Lyapunov function and LaSalle’s Invariance Principle is

used to explore the global stability of the EE.
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• Objective 3:

This is achieved using optimal control theory, Pontryagins maximum principal, with the

inclusion of Hamiltonian and Lagrangian equation. The adjoint condition, transversality

condition and the optimality condition were used to state the conditions necessary of the

optimal controls.

• Objective 4:

To achieve objective 4, cost-effectiveness analysis is done. Incremental cost-effectiveness

ratio is used for comparing cost of the control mechanisms against the health benefit

achieved. Cost-effectiveness ratio per infections avoided and the disability adjusted life

years averted over time are done aiming to show conditions of the infection in some years

later.

1.8 Significance of the Study

The following are the significance of this study;

1. The study will improve awareness and understanding of YF epidemic to the society,

its transmission dynamics and how to protect themselves from being infected by taking

affordable control measures.

2. It will help the government and policy makers to establish and put in place policies,

programmes and optimal plans for disease prevention and control.

3. The study will help educators in general to make a comprehensive information campaign,

educational seminars, workshops, media and training programmes aiming to educate and

improve awareness to people in endemic areas and particulary those with high risk, about

the disease effects and the importance of early vaccination for prevention and control.
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4. The study will add up the knowledge to the existing literature and provide a platform for

further research of infectious diseases particularly vector-borne using models.

1.9 Dissertation Structure

The dissertation is organised in chapters as follows:

Chapter 1: This chapter presents the general information of the research study which are;

introduction and background of the study, rationale/justification of the study, problem state-

ment, objectives of the research, research questions, methods used to achieve objectives and

significance of the study.

Chapter 2: In this chapter, we formulate and analyse a deterministic mathematical model

for YF transmission dynamics using non-linear ordinary differential equations. The model

considers three populations: two hosts (humans and primates) and one vector. We calculate

and analyse the basic reproduction number of the model using next generation matrix approach

and perform its sensitivity analysis in order to study the effects of model parameters to disease

transmission. Effects of sensitive model parameters are shown in numerical simulation.

Chapter 3: This chapter, considers the model developed in Chapter 2 to compute the disease

endemic equilibrium point and analyse the stabilities of DFE and EE. Local stability of disease-

free equilibrium (DFE) is established using trace-determinant approach of the Jacobian matrix

of the model, which was computed and evaluated at DFE. Global stability of DFE is established

using stable Metzler matrix theory and that of endemic equilibrium (EE) is established using

Lyapunov method together with LaSalle’s Invariance Principle.

Chapter 4: In this chapter, we extended the model of YF whereby control mechanisms were

introduced aiming to derive optimal control strategies for YF intervention and prevention. We
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considered personal protection and educational campaigns to human host population and in-

secticides which include larvicides and adulticides to mosquito (vector) population as control

variables. Basing on our assumptions, we did not consider any control variable for monkeys

populations.

Chapter 5: This chapter presents the cost-effectiveness analysis of different optimal control

measures considered in Chapter 4. The aim is to compare costs incurred with health out-

come achieved between two or more alternative interventions strategies that compete for the

same resources. We use the incremental cost-effectiveness ratio (ICER) to compare the cost-

effectiveness of our interventions basing on the model simulation results of Chapter 4. We

then went further to investigate the cost-effectiveness ratio of the best strategy obtained per

infections avoided and disability adjusted life years (DALYs) gained over time.

Chapter 6: This chapter presents summary of qualitative and numerical results of the study as

well as making conclusions and recommendations that go along with the results of the study. It

also points out several ways in which this study can be extended for future work.

1.10 Publications and Manuscript

Based on this study, the following articles have been published and/or presented at conference:

Monica Kung’aro, Livingstone S. Luboobi, and Francis Shahada (2014). “Reproduction Num-

ber for Yellow Fever Dynamics Between Primates and Human Beings.” Communications in

Mathematical Biology and Neuroscience, 2014: Article-ID No: 5.

Monica Kung’aro, Livingstone S. Luboobi, and Francis Shahada (2015). “Modelling and Sta-

bility Analysis of SVEIRS Yellow Fever Two Host Model.” Gulf Journal of Mathematics, 3(3):

106-129.
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Monica Kung’aro, Livingstone S. Luboobi, and Francis Shahada (2015). “Application of Opti-

mal Control Strategies for the Dynamics of Yellow Fever.” Journal of Mathematical and Com-

putational Science, 5(3): 430- 453.

This article has also been presented at the International Clinic on Meaningful Modelling of Epi-

demiological Data at African Institute for Mathematical Sciences (AIMS), Cape Town, South

Africa.

Submitted manuscript:Monica Kung’aro, Livingstone S. Luboobi, and Emmanuel Mpolya

(2015). “Cost-Effectiveness Analysis of Personal Protection, Educational Campaign and Spray

of Insecticides for the Dynamics of Yellow Fever.” submitted to International Journal of Ad-

vances in Applied Mathematics and Mechanics.
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CHAPTER TWO

Basic Reproduction Number for Yellow Fever Dynamics Between Primates and Human

Beings 1

Abstract: Vector borne diseases are spreading very rapidly in the populations all over the

World. Thus, there is need to remind people about transmission of these diseases in order to

eradicate them. In this chapter we propose a deterministic mathematical model using non-

linear ordinary differential equations to gain an insight into dynamics of yellow fever between

monkeys, human beings and Aedes mosquito for the purpose of controlling the disease. In the

analysis of the model we investigate the basic reproduction number, R0, between monkeys,

vectors and human host. The disease threshold parameter is obtained using next generation

matrix approach and is of the form R2
0 = Rh + Rm, where Rh and Rm are the reproduction

number for human-vector and vector-monkey compartments respectively.

It is proved that the global transmission dynamics of the disease are completely determined

by the basic reproduction number. In order to study the effect of model parameters to R0,

the sensitivity analysis of basic reproductive number, R0, with respect to epidemiological

parameters is performed. Results call attention to parameters regarding to daily biting rate

of mosquitoes, birth rate of vectors, probability of transmission from infectious vector to

susceptible human and vice versa, recruitment of human host which includes unvaccinated

immigrants as well as the incubation period for both vector and humans. Thus, quick and

focused interventions, like personal protection and destruction of breeding sites, may be

effective for controlling disease transmission.

1This chapter is based on the published paper:
Kung’aro, M., Luboobi, L. S., and Shahada, S. (2014). Reproduction number for yellow fever dynamics be-

tween primates and human beings. Communications in Mathematical Biology and Neuroscience 2014, article ID
No:5
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2.1 Introduction

Yellow Fever (YF) is among the vector-borne infectious diseases caused by viruses which is

primarily transmitted by disease transmitting biological agents, called vectors. It is a viral

hemorrhagic fever caused by yellow fever virus (YFV) and is transmitted through the bite of

an infected female yellow fever mosquito (Robertson et al., 1996). It only infects humans,

monkeys and several species of mosquito (WHO, 2013). The disease is endemic in tropical and

subtropical areas of Africa and South America.

A dramatic resurgence of YF has occurred since 1980s in both sub-Saharan Africa and South

America (Robertson et al., 1996). Increasing migration, accelerating urbanization, and im-

proved travel infrastructure are global trends that increase the risk of YF spreading to parts of

the world where the disease had disappeared. There are three epidemiologically different infec-

tious cycles, in which the YFV is transmitted from mosquitoes to humans and/or other primates

(Barrett and Higgs, 2007), which are; jungle (sylvatic), intermediate (savannah), and urban. In

the ‘urban cycle’, only the yellow fever mosquito Aedes aegypti is involved.

Besides the urban cycle there is, both in Africa and South America, a sylvatic cycle (forest cycle

or jungle cycle), where Aedes africanus (in Africa) or mosquitoes of the genus Haemagogus

and Sabethes (in South America) serve as vectors. In the jungle, mosquitoes infect mainly

monkeys; and the disease is mostly asymptomatic in African primates. In South America, the

sylvatic cycle is currently the only way humans can infect each other (Barrett and Higgs, 2007).

People who are bitten by Aedes africanus or Haemogogus in the jungle become infected and

can carry the virus to urban centres, where Aedes aegypti acts as a vector. It is because of this

sylvatic cycle that yellow fever cannot be eradicated (Barrett and Higgs, 2007).

In Africa the third infectious cycle, ‘savannah cycle’ or intermediate cycle, occurs between

the jungle and urban cycle. Different mosquitoes of the genus Aedes are involved. In recent

years, this has been the most common form of transmission of YF in Africa (WHO, 2006). In
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humans, yellow fever’s incubation period is three to five or six days. During this time, there are

generally no symptoms identifiable to the host (Tolle, 2009). After that time, a person infected

begins with an abrupt onset of symptoms, including fever and chills, intense headache and

lower backache, muscle aches, nausea and extreme exhaustion.

The World Health Organization (WHO) estimated that YF causes 200,000 illnesses and 30,000

deaths every year in unvaccinated populations and today 90% of the infections occur in African

continent (Tolle, 2009; Mutebi and Barrett, 2002).

Mathematical models have become an important tool in analysing the spread and control of

infectious diseases. Thomé et al. (2010) conducted a study on optimal control of Aedes aegypti

mosquitoes by the sterile insect technique (SIT) and insecticide. They presented a mathematical

model to describe the dynamics and control of mosquito population only, where sterile male

mosquitoes are introduced as a biological control, besides the application of insecticide. Their

results showed that application of insecticide is needed at the beginning of the control to reduce

Aedes aegypti populations. For us, we are going to study the dynamics and control of vector

and human, and how the infection is transmitted from one population to another. However, the

study of Thome and his friends, will help our study where Aedes aegypti is taken as a vector

for YF transmission.

Monath and Cetron (2002) conducted a study to address transmission and prevention of YF

in persons traveling to the tropics. They argued that because YF is maintained in nature by

transmission between monkeys and mosquitoes and because it cannot be eradicated, prevention

and control of the disease requires continuous immunization of human populations at risk. This

study is theoretical, we are going to use mathematical models to check the relevance of their

comments.

Another theoretical study was done by Amaku et al. (2011) to address the question as to why
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dengue and yellow fever coexist in some areas of the world and not in others? They devel-

oped a theoretical model which includes humans and two mosquito species, Aedes aegypti

(which transmits both infections: yellow fever and dengue) and Aedes albopictus(which trans-

mits dengue only). Their results shows that in Asia, vaccination of the local community is

virtually absent but travelers from endemic areas are demanded to produce a vaccination cer-

tificate at entrance of the countries of this region to reduce the probability of importing the

disease. They recommended on the role of vaccination of population in the endemic regions

aiming to control yellow fever epidemic. The study consider one host only, two hosts (human

and monkeys) will be considered for our case.

Garba et al. (2008) use a deterministic mathematical model to study the dynamics of dengue (a

YF like disease). The model assumes a homogenous mixing of human and vector population-

s with seven mutually-exclusive compartments representing the human and vector dynamics,

whereby Susceptible, Exposed, Infectious, Recovered (SEIR) and Susceptible, Exposed, Infec-

tious (SEI) compartments were considered for human and vector respectively. Analysis shows

that the model exhibits the phenomenon of backward bifurcation, where the stable disease-free

equilibrium (DFE) coexists with a stable endemic equilibrium (EE), meaning that epidemio-

logical requirement of making the threshold parameter less than unity is no longer sufficient,

although necessary for effectively controlling the spread of dengue in a community. The model

is extended to incorporate an imperfect vaccine against the strain of dengue. Using the theory

of centre manifold, the extended model is also shown to undergo backward bifurcation. For

us we are going to consider vaccination at initial stage, whereby two hosts and a vector will

be considered and the model will be extended using personal protection, educational campaign

and insecticides as control mechanisms.

Another mathematical model to study dengue fever in a virgin environment by Bowman (2012)

was formulated. The model includes four human classes: Susceptible, Exposed, Infected, and

Recovered (SEIR) and it recognizes four groups of mosquitoes: Aquatic, Susceptible, Exposed,

18



and Infected (ASEI). An environment with no immunities or increased susceptibilities to the

various dengue serotypes, and the existence of a single serotype throughout the epidemic was

considered. Due to novelty incidence of dengue in Cape Verde and to minimal reporting, the

data set for the epidemic is sparse. Thus, Bowman extended logistic model fitting technique

using few data to ascertain some key parameter values of the formulated model. Threshold

parameter was calculated and analysed numerically whereby result shows the reality of the

disease occurrence in Cape Verde. Thus, we are going to use some of parameter values obtained

by Bowman (2012) in our simulation.

In this chapter, we propose a mathematical model of YF that assesses the dynamics of YF

between two hosts (monkey and human beings) with one vector. The developed model is of type

SVEIRS for human host and SEI for the vector and monkey. The model is based on the basic

model of Dengue transmission (the YF like disease) by Yang and Ferreira (2008). Modifications

have been made to incorporate monkeys as another host, vaccination, immigration and control

mechanisms.

2.2 Materials and Methods

2.2.1 Model Formulation

We formulate a model for the spread of YF in the human, vector and monkey populations

with the total population sizes at time t given by NH(t), NV (t) and NM(t) respectively. The

populations are further compartmentalized into epidemiological classes as shown in the model

flow diagram in Figure 2.1. The vector and monkey compartments of the model do not include

the immune class as they never recover from the infection, that is their infective period ends

with their death due to their relatively short life cycle.
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Figure 2.1: Model flow diagram for transmission dynamics of YF.

As indicated in the compartmental diagram (Figure 2.1), the model divides the human popula-

tion into 5 classes: susceptible, SH , vaccinated, VH , exposed, EH , infectious, IH and recov-

ered, RH . People enter susceptible class either through per capita birth at a constant rate bH

or through immigration (Λ) whereby a proportion ρ of the immigrants enter in the vaccinated

class. Susceptible individuals may choose to be vaccinated at the rate ε.

We divide the vector (mosquito) population into 3 classes: susceptible, SV , exposed, EV , and

infectious, IV . Female YF mosquitoes enter the susceptible class through birth then moves

from the susceptible to the exposed class and later to the infectious class. The mosquito remains

infectious for life (Dumont et al., 2008) and leave the population through a per capita density-

dependent natural death rate.

We also divide the monkey population which is the source of infection (Ellis and Barrett, 2008;

Rogers et al., 2006; Gubler, 2004; Gould et al., 2003) into 3 classes: susceptible, SM , exposed,
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EM , and infectious, IM . When an infected monkey is bitten by a tree-hole breeding mosquito,

the mosquito acquires the virus and then the mosquito can pass the virus on to any number of

other monkey and humans it may bite when it comes across them. When human is bitten by

an infected mosquito, the human may acquire the virus. The infected human returns to the city,

where an urban mosquito (Aedes aegypt) serves as a viral vector spreading infection rapidly by

biting other humans. Parameters of the model are as shown in Table 2.1:

Table 2.1: Description of parameters of the model system (2.6)

Symbol Description
β1 Transmission probability of vector to human
β2 Transmission probability of human to vector
β3 Transmission probability of primate to vector
β4 Transmission probability of vector to primate
δh Progression rate from eh to ih
δv Progression rate from ev to iv
δm Progression rate from em to im
bh Birth rate of human
bv Birth rate of vector
bm Birth rate of primates
a Daily biting rate
γ Natural recovery rate
α Death rate due to disease for human
ω rate of relapse of vaccinated and recovered human
ε vaccination rate of susceptible human
ρ proportion of immigrant who are vaccinated
σ arrival rate of immigrant per individual per time
µh natural death rate of human
µv natural death rate of vector
µm natural death rate of primates
λvh force of infection from vector to human
λhv force of infection from human to vector
λmv infection force from monkey to vector
λvm infection force from vector to monkey

The developed model depend on the following assumptions, the new born babies do not have

the disease, the efficacy of the vaccine is 100% effective for not more than ten years, the disease
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has no epidemiological effect on the demographic dynamics of the vector (mosquito), we ignore

bites of an infected female mosquito onto an infected human host.

However, we also assume that the rate of relapse of vaccinated individual back to susceptibility

is the same as that of recovered individuals and no vertical transmission of the infection in

the vector population. Migration of monkeys was ignored, that is to say; mosquitoes that go

to the monkeys habitats are the ones infected by the bites of infected monkeys and can infect

susceptible monkeys (primates).

2.2.2 Description of Model Flow Diagram

When an infectious female Aedes aegypt mosquito bites a susceptible human, there is some

finite probability that the parasite will be passed on to the human and the person will move

to the exposed class. After a certain period of time, people from the exposed class enter the

infectious class at a rate δ that is the reciprocal of the duration of the latent period.

After some time, the infectious humans recover naturally at the rate γ, hence move to the

recovered class. The recovered humans have some immunity to the disease and do not get

clinically ill, after some years, they lose their immunity and return to the susceptible class at

the rate ω. Humans leave the population through natural death rate µH , and through a per capita

disease-induced death rate α, which is small in this case. However, like any other vector born

diseases the YF disease induced death rate is very small in comparison with the recovery rate

(Tumwiine et al., 2010).

2.2.3 Model Equations

Applying the assumptions, definition of variables and parameters as well as description of terms

above, the ordinary differential equations which describe the dynamics of YF in the human,
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vector and monkeys population are formulated as shown below:

Human:

dSH(t)

dt
= bhNH + (1− ρ)Λ + ω(VH +RH)− λvh − εSH − µhSH ,

dVH(t)

dt
= ρΛ + εSH − ωVH − µhVH ,

dEH(t)

dt
= λvh − δhEH − µhEH ,

dIH(t)

dt
= δhEH − (µh + α)IH − γIH ,

dRH(t)

dt
= γIH − µhRH − ωRH ,

(2.1)

Vector:
dSV (t)

dt
= bvNV − (λhv + λmv)− µvSV ,

dEV (t)

dt
= (λhv + λmv)− δvEV − µvEV ,

dIV (t)

dt
= δvEV − µvIV ,

(2.2)

Monkeys:
dSM(t)

dt
= bmNM − λvm − µmSM ,

dEM(t)

dt
= λvm − δmEM − µmEM ,

dIM(t)

dt
= δmEM − µmIM ,

(2.3)

where; λvh =
aβ1SHIV
NV

, λhv =
aβ2SV IH
NH

, λmv =
aβ3SV IM
NM

and λvm =
aβ4SMIV
NV

.

In the model the term λvh =
aβ1SHIV
NV

denotes the rate at which susceptible human hosts

SH get infected from the infected vector IV (force of infection from vector to human), λhv =

aβ2SV IH
NH

denotes the rate at which susceptible vector SV get infected from the infected human

host IH (infection force from human host to vector), λmv =
aβ3SV IM
NM

denotes the rate at which

the susceptible vector SV get infected from the infected monkey IM (force of infection from

monkey to vector) and the term λvm =
aβ4SMIV
NV

denotes the rate at which the susceptible

monkey SM get infected from the infected vector IV . However, it is observed that the infected

vector IV can transmit the infection to both the human hosts and the monkeys.
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The total population sizes NH(t), NV (t) and NM(t) can be determined by:

NH(t) = SH(t) + VH(t) + EH(t) + IH(t) +RH(t),

NV (t) = SV (t) + EV (t) + IV (t),

NM(t) = SM(t) + EM(t) + IM(t).

(2.4)

Thus, adding from the differential equations, of the model system (2.1), (2.2), and (2.3) for the

human host population, vector population and monkeys population, we have;

dNH(t)

dt
= Λ + (bh − µh)NH − αIH ,

dNV (t)

dt
= (bv − µv)NV ,

dNM(t)

dt
= (bm − µm)NM .

(2.5)

The total population sizes of female mosquitos and monkeys, NV and NM are stationary for

bv = µv and bm = µm, declines for bv < µv and bm < µm and grows exponentially for bv > µv

and bm > µm respectively.

2.2.4 Dimensionless Transformation

We transform our model equations into normalized quantities such that the total population for

the normalized model is equal to 1. This can be done by scaling the population of each class by

the total species population. We make the following transformation:

sh =
SH
NH

, vh =
VH
NH

, eh =
EH
NH

, ih =
IH
NH

, rh =
RH

NH

, sv =
SV
NV

, ev =
EV
NV

,

iv =
IV
NV

, sm =
SM
NM

, em =
EM
NM

and im =
IM
NM

.

in the classes SH , VH , EH , IH , RH , SV , EV , IV , SM , EM and IM of the populations

respectively. Also, we define σ =
Λ

NH

as the arrival rate of immigrants per individual per unit

time.
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Differentiating the dimensionalized equations and solving for the derivatives of the scaled vari-

ables, system (2.1), (2.2), (2.3) becomes the normalised model as:

dsh
dt

= bh + σ(1− ρ) + ωvh + ωrh − aβ1shiv − sh(ε+ bh + σ) + αshih,

dvh
dt

= ρσ + εsh − vh(ω + bh + σ) + αvhih,

deh
dt

= aβ1shiv − eh(δh + bh + σ) + αehih,

dih
dt

= δheh − ih(γ + α + bh + σ) + αi2h,

drh
dt

= γih − rh(ω + bh + σ) + αrhih

dsv
dt

= bv − (aβ2svih + aβ3svim)− svbv,
dev
dt

= aβ2svih + aβ3svim − ev(δv + bv),

div
dt

= δvev − ivbv,
dsm
dt

= bm − aβ4smiv − smbm,
dem
dt

= aβ4smiv − em(δm + bm),

dim
dt

= δmem − imbm.

(2.6)

However, it is easy to show that
dnh
dt

= 0,
dnv
dt

= 0 and
dnm
dt

= 0 for the humans, vector and

monkeys respectively. Where solutions are restricted to the hyperplanes, sh+vh+eh+ih+rh =

1, sv + ev + iv = 1 and sm + em + im = 1.

The YF model system (2.6) monitors human, mosquito (vector) and monkeys (primates) popu-

lations, we assume that all state variables and parameters of the model are non-negative ∀t ≥ 0.

Thus, the model will be analysed in a suitable feasible region where it makes biological sense.

This region will be obtained as follows:

Lemma 2.1. Solutions of the normalised model system (2.6) are contained in the region Φ =

ΦH ∪ ΦV ∪ ΦM ⊂ Γ5
+ × Γ3

+ × Γ3
+.

Proof. We categorize the model system into three parts; namely the human component (nh),

vector (mosquito) component, (nv) and the monkeys component (nm), given respectively by,
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nh = sh + vh + eh + ih + rh, nv = sv + ev + iv and nm = sm + em + im.

such that

ΦH = {(sh, vh, eh, ih, rh) ∈ Γ5
+ : 0 < sh + vh + eh + ih + rh ≤ 1},

ΦV = {(sv, ev, iv) ∈ Γ3
+ : 0 < sv + ev + iv ≤ 1},

ΦM = {(sm, em, im) ∈ Γ3
+ : 0 < sm + em + im ≤ 1}.

Thus,

Φ = ΦH ∪ ΦV ∪ ΦM ⊂ Γ5
+ × Γ3

+ × Γ3
+

which can be shown to be positively invariant with respect to the model system (2.6). From

this lemma, we conclude that it is sufficient to consider the dynamics of model system (2.6) in

Φ. In this region, the model can be considered as being epidemiologically and mathematically

well-posed (Hethcote, 2000).

2.3 Model Analysis

We now investigate the existence of disease-free equilibrium (E0) and basic reproduction num-

ber. E0 is obtained by setting the derivatives with respect to time of the model system (2.6),

equal to zero. On calculations, the following E0 was obtained:

E0 =

(
bh + (1− ρ)σ + ω

ω + ε+ bh + σ
,

ρσ + ε

ω + ε+ bh + σ
, 0, 0, 0, 1, 0, 0, 1, 0, 0

)
. (2.7)

2.3.1 The Basic Reproduction Number, R0

One of the most important concerns in the analysis of mathematical epidemiological models

is the determination of the asymptotic behaviour of their solutions which is usually based on

the stability of the associated equilibria (Moghadas, 2004). These models typically consist of a
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disease-free equilibrium and at least one endemic equilibrium. The local stability of the disease-

free equilibrium is determined based on a threshold parameter, known as the basic reproductive

number, R0.

An easy way to theoretically computeR0 is to follow the approach described by Van den Driess-

che and Watmough (2002). In model system (2.6), we consider only the terms in which the

infection is in progression, i.e eh, ih, ev, iv, em and im.

The corresponding equations can be re-written in the following way

x′i = fi(x) = Fi(x)− (V−i (x)− V+
i (x)), i = 1, ..., 6, (2.8)

where Fi(x) represents the rate of appearance of new infections in compartment i, V+
i (x) rep-

resents the rate of transfer of individuals into compartment i by all other means, other than the

epidemic and V−i (x) represents the transfer of individuals out of the compartment i.

Hence, the following system is obtained:

deh
dt

= aβ1shiv − eh(δh + bh + σ) + αehih,

dih
dt

= δheh − ih(γ + α + bh + σ) + αi2h,

dev
dt

= aβ2svih + aβ3svim − ev(δv + bv),

div
dt

= δvev − ivbv,
dem
dt

= aβ4smiv − em(δm + bm),

dim
dt

= δmem − imbm.

(2.9)
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From (2.9), we derive Fi and Vi as

Fi =



aβ1shiv

0

aβ2svih + aβ3svim

0

aβ4smiv

0


, (2.10)

and

Vi =



eh(δh + bh + σ)− αehih

ih(γ + α + bh + σ)− δheh − αi2h

ev(δv + bv)

ivbv − δvev

em(δm + bm)

imbm − δmem


. (2.11)

Thus, to obtain R0, we compute matrices F and V which are m×m matrices, where m repre-

sents the infected classes, defined by

F =

[
∂Fi
∂xj

(E0)

]
,

and

V =

[
∂Vi
∂xj

(E0)

]
with 1 ≤ i, j ≤ m.

We then compute matrix FV −1, defined as the next generation matrix (Diekmann et al., 1990).

The R0 is then defined as

R0 = ρ(FV −1), (2.12)
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where ρ(FV −1) is the spectral radius of matrix FV −1. Thus,

R0 =

√
a2β1β2δhδvs

◦
h

(δh + bh + σ)(γ + α + bh + σ)bv(δv + bv)
+

a2β3β4δvδm
bm(δm + bm)bv(δv + bv)

, (2.13)

where s◦h =
bh + (1− ρ)σ + ω

ω + ε+ bh + σ
from the first component of E0 in (2.7).

In our model we have two hosts and one vector, and it is indicated in the model that the vector

can transmit the infection to both the human host and the monkeys. Thus, for easy understand-

ing, we can represent the reproduction number as,

R0 =
√
Rh +Rm, such that,

Rh =
(bh + σ(1− ρ) + ω)a2β1β2δhδv

(ω + ε+ bh + σ)(δh + bh + σ)(γ + α + bh + σ)bv(δv + bv)
, (2.14)

which is the reproduction number of human host and vector compartments. It represents the

infection from vector to human and human to vector. Again, we can represent it as Rh =

Rvh ×Rhv. Thus,

Rvh =
aβ1s

o
hδh

(γ + α + bh + σ)(δh + bh + σ)
,

for

soh =
(bh + σ(1− ρ) + ω)

(ω + ε+ bh + σ)
.

It represents the product between transmission probability of the infection from vector to human

and the number of susceptible human host per vector. Also

Rhv =
aβ2δv

(δv + bv)
.

This represents the product between transmission probability of the infection from human host

to vector and the proportion of vectors that survive the incubation period. We also have,
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Rm =
a2β3β4δvδm

bm(δm + bm)bv(δv + bv)
, (2.15)

as the reproduction number of monkeys to vector and vector to monkeys compartments. Again,

it can be represented as Rm = Rmv ×Rvm into which

Rmv =
aβ3δv

bv(δv + bv)
,

represents the product between transmission probability of the infection from monkey to vector

and the proportion of the vector that survive the incubation period.

Rvm =
aβ4δm

bm(δm + bm)
,

represents the product between transmission probability of the infection from vector to monkey

and the proportion of monkey that survive the incubation period.

2.3.2 Sensitivity Analysis of R0

In order to determine how best to reduce mortality and morbidity due to YF infection, it is

necessary to study the relative importance of different factors responsible for its transmission

and prevalence (Chitnis et al., 2008). Thus, we perform sensitivity analysis of the basic repro-

duction number with respect to model parameters.

The sensitivity analysis will assist in curtailing the transmission of the disease by using appro-

priate control strategies. According to Hamby (1994) there are more ways of conducting sensi-

tivity analysis, all resulting in a slightly different sensitivity ranking. Following the approaches

of Okosun et al. (2011), Chitnis et al. (2008) and Pannell (1997), we use the normalized for-

ward sensitivity index which is the backbone of nearly all other sensitivity analysis techniques

and is computationally efficient.
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Definition 2.2. The normalized forward sensitivity index of a variable, h, that depends differ-

entiable on a parameter, l, is defined as:

Υh
l =

∂h

∂l
× l

h
(2.16)

The definition, tells us that the sensitivity index measures the relative change in variable h for a

small relative change in the parameter l. A negative sensitivity index means that an increase in

the value of the parameter l would lead to a decrease in the value of the variable h, and on the

other hand, a positive sensitivity index means that an increase in the parameter value l would

lead to an increase in the value of the variable h.

We therefore evaluate the sensitivity indices of R0 at the baseline parameter values given in

Table 2.2 to each of the seventeen parameters described in Table 2.1 using Maple software. The

sensitivity index of R0 with respect to a, for example is,

ΥR0
a =

∂R0

∂a
× a

R0

= 1 (2.17)

The detailed sensitivity indices of R0, resulting from the evaluation to the seventeen different

parameters of the model are shown in Table 2.2.

By analyzing the sensitivity indices we observe that, the most sensitive parameter is the

mosquito biting rate, a. Other important parameters include the probability of disease transmis-

sion from infectious mosquitoes to susceptible humans, β1, progression rate of exposed vector,

δv, progression rate of exposed human, δh, human to mosquito disease transmission probability,

β2, mosquitoes birth rate, bv and human host birth rate, bh.

From the most sensitive parameters, the reproductive number,R0 is directly related to the biting

rate of mosquito, transmission probabilities of vector to human as well as the progression rate

of exposed vector and exposed human and inversely related to birth rate of vector and human.
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Table 2.2: Sensitivity indices of model parameters to R0

Parameter Description Sensitivity index
a Mosquito daily bitting rate 1
δv Progression rate of exposed vector 0.49992
β1 Transmission probability of vector to human 0.49947
β2 Transmission probability of human to vector 0.49946
δh Progression rate of exposed human 0.49128
β3 Transmission probability of primate to vector 0.00054
β4 Transmission probability of vector to primate 0.00053
δm Progression rate of exposed primate 0.00053
ω rate of relapse of vaccinated and recovered human 0.00014
bv Birth rate of vector -0.99992
bh Birth rate of human -0.75118
bm Birth rate of primates -0.00107
α Death rate due to disease for human -0.13028
σ arrival rate of immigrant per individual per time -0.00024
γ Recovery rate -0.00183
ε vaccination rate of susceptible human -0.00065
ρ proportion of immigrant who are vaccinated -0.0000023

Since ΥR0
a = 1 increasing (or decreasing) a by 10% increases (or decreases) R0 by 10%. In the

same way, increasing (or decreasing) δv, β1 and β2 by 10% increases (or decreases) R0 by 5%.

Similarly, increasing (or decreasing) bv by 10% decreases (or increases) R0 by 20%.

Reducing the number of contacts between humans and mosquitoes, through a reduction in either

or both, the probability (frequency) of transmitting the infection, and the daily mosquitoes

biting rate, would have the largest effect on disease transmission. Also, as the latent period of

vector is about the same as the lifespan of mosquitoes, controlling the birth rate of vectors and

decreasing the lifespan of the mosquitoes reduces the basic reproductive number because more

infected mosquitoes will die before they become infectious (Okosun et al., 2011; Chitnis et al.,

2008).

This suggests that strategies that can be applied in controlling the disease transmission are to

target the mosquito biting rate and death rate such as the use of mosquito treated bed-nets,

insect repellents, indoor residual spraying, insecticides and larvacides.
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2.4 Numerical Results and Discussions

In this section we presented some numerical results for the model. The values of parameters are

given in Table 2.3. Most of these values are according to the A. aegypti mosquitoes in vector

borne diseases reported in the literature.

Table 2.3: Description of parameter values of model system (2.6)

Parameter Range of values Source

β1 [0.5-0.9] Bowman (2012); Amaku et al. (2011),
Dumont et al. (2008)

β2 [0.37-0.9] Rodrigues et al. (2013); Bowman (2012),
Nishiura (2006)

β3 [0.5] assumed
β4 [0.9] assumed
δh [0.05-1] day−1 Bowman (2012); Garba et al. (2008),

Esteva and Vargas (1998)
δv [0.02-1] day−1 Bowman (2012); Amaku et al. (2011),

Garba et al. (2008)
δm [0.85-1] day−1 assumed
bh [0.003] day−1 Esteva and Vargas (1998)
bv [0.01] day−1 Esteva and Vargas (1998),

Coutinhoa et al. (2006)
bm [0.04] day−1 assumed
a [0.5-1] Bowman (2012); Amaku et al. (2011),

Dumont et al. (2008)
γ [0.05-0.1] day−1 Pinho et al. (2010); Codeço et al. (2007),
α [10−3] Garba et al. (2008)
ω [0.05] day−1 Garba et al. (2008)
ε [0.005] assumed
ρ [0.02] Rodrigues et al. (2013)
σ [0.009] assumed

At first we investigate the effects of the threshold parameter, that is the basic reproductive

number, R0, governing the dynamics of populations and the proportion of individuals in each

class. We have seen earlier, that R0 obtained was expressed in the form of R2
0 = Rh + Rm,

this is because in our model, we have three different populations: human host, monkeys and

vector. So the expected basic reproduction number reflects the infection between vector-human
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and human-vector as well as monkey-vector and vector-monkey respectively since the vector is

capable of transmitting the infection to both, human hosts and monkeys. This result is similar

with Barrett and Higgs (2007) who argue that a key feature of YFV is the high viremia in

primates (monkeys) that is critical to the transmission of the virus by mosquito vectors.

(a) (b)

Figure 2.2: Disease Prevalence with respect to variations of contact rate and transmission prob-
ability of vector to human.

We now present numerical results with respect to the sensitive parameters to R0, which are

a, β1, bv, bh, δv, δh that affect disease prevalence (positively and negatively) based on sensitivity

analysis and numerical results of the general YF model. Figure 2.2 shows that the disease

prevalence increases with time as biting rate and transmission probability of vector to human

increases.

From Figure 2.3, we see that the disease prevalence reduces as we increase the birth rates

of vector and human populations respectively, as from sensitivity analysis these parameters

have negative sensitivity index. Also, Figure 2.4 shows the increase in disease prevalence

as progression rates from latent to infectious human and latent to infectious vector increases

respectively.
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(a) (b)

Figure 2.3: Disease Prevalence with respect to variations of birth rates of human bh and vector
bv.

(a) (b)

Figure 2.4: Disease Prevalence with respect to variations of progression rates of human δh and
vector δv.

Figure 2.5 indicates proportion of susceptible and infectious populations as they vary with time.

In (a) the proportion of susceptible human increases up to value 0.86 and becomes constant. The

value does not reach 1, because some of susceptible human populations are affected and might

die due to disease as time goes. Proportion of susceptible vector and primates (monkeys) go on

increasing to 1 as time goes, which shows that they are not affected as much as humans. Also

in (b), we see that proportion of infectious human population, vectors and primates (monkeys)
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decreasing with time indicating that the disease prevalence (after exposure) to human reduces

to about zero in a years time, implying that it is possible to mitigate the infection in human

population if we can have controls such as continuous vaccination to susceptible human pop-

ulation. These results are in conjecture with Ellis and Barrett (2008) who noted that without a

vaccine-protected population, the disease will continue to emerge unpredictably and remain an

imminent public health threat.

(a) (b)

Figure 2.5: Proportion of susceptible and infectious populations at DFE zone

Figure 2.6 (a) shows the proportion of susceptible human, vector and primates decreasing with

time at initial stage as some are being exposed to the disease at endemic zone. However, pro-

portion of susceptible vector seems to maintain the level of 0.02 after 150 days while proportion

of susceptible primate (monkeys) decreases to 0.16 before maintaining this value for the whole

time period. Proportion of susceptible human seems to decrease to 0.15 for the first 20 days

then started to increase slowly up to 0.19 the time when this value becomes constant.

Figure 2.6 (b) shows proportion of infectious human, vector and primates (monkeys) increasing

with time at endemic zone. Proportion of infectious human increases slowly to a value of 0.55

while proportion of infectious primates (monkeys) goes up to a value of 0.82. We see high

increase in infectious monkeys as compared to infectious human. This is due to the vaccination
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(a) (b)

Figure 2.6: Proportion of susceptible and infectious populations at EE zone.

taken to some human individuals as compared to monkeys, monkeys do not take vaccines for

prevention and control.

2.5 Conclusion

A deterministic mathematical model for YF has been formulated using ordinary differential

equations. The model considers two hosts (humans and monkeys) and one vector. The repro-

duction number, R0, as a threshold of the epidemic is discussed through sensitivity analysis

and simulation with different parameter values giving an illustration of the dynamics of the

epidemic.

Results call for current options for prevention and control of parameters regarding to daily

biting rate of mosquitoes, recruitment rate of vectors, incubation period for vectors and human

hosts, probability of contact between susceptible humans and infectious vectors as well as the

recruitment of human host which includes unvaccinated immigrants. Also, numerical results

(Figure 2.5 b) revealed that in a year’s time prevention of the disease is possible to human

host but not possible to the monkeys (primates), this is because the YFV originates from the
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monkey (primate) population as pointed out by Ellis and Barrett (2008), Rogers et al. (2006)

among others. Also, Barrett and Higgs (2007) found that YFV is enzootic and as such cannot

be eradicated, but a combination of mosquito control and vaccination is efficient in disease

prevention. Again, an increase in the proportion of infected vector and biting rate of vector to

human will contribute greatly to an increase in YF transmission dynamics.

However, human migration plays an important role in the transmission and spread of YF. They

contribute to the sustainability of the YF epidemic either directly (infected immigrants) or in-

directly (health immigrants susceptible to infection by locals). Thus, transmission factors must

closely be monitored to ensure health and well being of everyone in the community. The result

has been supported by other researchers in the literature like Gubler (2004), in his study titled

the changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? He observed

that increasing the movement of people and unprecedented population growth primarily in the

urban centers of developing countries, has been a major driving force of YFV transmissions.

Also Rogers et al. (2006) in his study titled the global distribution of YF and Dengue concluded

that vector and disease spread to new regions seems almost inevitable, as are the consequences

of co-circulation of different serotypes including unvaccinated people.

To provide further insights in planning and assessing the impact of current and future control

strategies, numerous additions in the model will be required to help suggest the best mitigation

strategy, for example thinking of vector control to minimize breeding of mosquito, personal

protection which includes the use of mosquito repellents and treated bed-nets that can reduce

the probability of contact between vectors and humans. Therefore, to ensure minimization of

the outbreak human population should be educated regarding YF, its transmissions factors and

control for early management of the epidemic.
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CHAPTER THREE

Modelling and Stability Analysis of SVEIRS Yellow Fever Two Host Model 2

Abstract: We describe transmission dynamics of yellow fever (YF) within two host popula-

tions, and build up a deterministic SVEIRS model with vaccination to the entire new born. The

model aims at clarifying contributions of mathematical ideas in studying the impact of YF dis-

ease dynamics. We examine existence of equilibrium solutions and give out conditions that are

sufficient for existence of realistic equilibria. Stability analysis of the equilibria is presented;

trace-determinant approach is used in determining local stability of disease-free equilibrium

(DFE) and Metzler matrix for global stability. Lyapunov function is used in establishing condi-

tions for global stability of endemic equilibrium (EE). Our results suggests that eradication of

the infection to human population is possible only if Rvm < 1 and Rhv < 1. Due to new births

and immunity loss to YF after ten years, susceptible class will always be refilled and hence

continuous vaccination is essential.

Keywords: Lyapunov function, Metzler matrix, stability analysis.

2010 Mathematics Subject Classification: Primary 46L55; Secondary 44B20.
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3.1 Introduction

Yellow fever (YF) is a zoonotic arboviral disease with a long history of outbreaks in human

populations (Staples and Monath, 2008). It is a viral hemorrhagic fever caused by yellow fever

virus (YFV) and is transmitted through the bite of an infected female yellow fever mosquito,

Aedes aegypti (Robertson et al., 1996).

YFV is endemic to tropical areas of Africa and South America where it is maintained in sylvatic

or jungle cycles between non-human primates and tree-dwelling mosquitoes (Vainio and Cutts,

1998). Humans and primates are the principle reservoirs for the virus. Increasing migration,

accelerating urbanization, and improved travel infrastructure are global trends that increase the

risk of YF spreading to parts of the world where the disease had disappeared.

Liu et al. (2013) argued that, mathematical analysis and modelling operation of infectious dis-

eases are critical to the studying of virus spreading dynamics which can state clearly the origi-

nation and evolution of viruses. Also, according to Tumwiine et al. (2007), mathematical mod-

elling can help in figuring out decisions that are of significant importance and increase influence

the theory and practice of disease management and control. They might provide comprehensive

examinations that enter into decisions in a way that human reasoning and debate cannot.

Mathematical and epidemiological models have been developed in the literature to address

vector-borne diseases transmission dynamics and control (Garske et al., 2014; Liu et al., 2013;

Lashari et al., 2012; Johansson et al., 2010). Many of these models have a disease-free equi-

librium (DFE) at which the population remains unaffected by the disease (absence of disease)

Van den Driessche and Watmough (2002), and also most reasonable epidemic models, possess

a positive endemic equilibria (EE).

These models usually have a threshold parameter known as the basic reproduction number, R0,

into which Heesterbeek (2000) defined it as the average number of secondary cases produced
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by a ‘typical’ infected (assumed infectious) individual during his/her entire life as infectious

(infectious period) when introduced in a population of susceptibles. This non-dimensional

quantity cannot be computed explicitly in some cases because the mathematical description of

what is a ‘typical’ infectious individual is difficult to quantify in populations with high degree

of heterogeneity (Castillo-Chávez et al., 2002). Although R0 can not be computed explicitly,

its role on the study of stability of equilibria can still be determined.

Stability analysis of equilibria is one of the classical problems in mathematical epidemiology

and different approaches have been proposed to the stability of the equilibria Mpeshe et al.

(2014b), Kamgang and Sallet (2008). Some of the methods proposed in the literature for

analysing the stability of equilibria includes trace-determinant approach of the Jacobian ma-

trix of the model system evaluated at the DFE, Routh-Hurwitz criteria, Lyapunov techniques

to obtain threshold conditions, stable Metzler matrices (Kamgang and Sallet, 2008), LaSalle’s

Invariance Principle, center manifold, Poincare’ index and many more others.

Although there are many types of Lyapunov functions depending on the nature of the model, it

is often difficult to construct such Lyapunov functions. A general form of Lyapunov functions

used in the literature of mathematical biology is;

L(xi) =
n∑
i=1

ci

(
xi − x∗i − x∗i ln

xi
x∗i

)
, (3.1)

originally from the first integral of a Lotka-Volterra system Shuai and van den Driessche (2013).

When applied to disease models, suitable coefficients ci have to be determined such that the

derivative of L(xi) along solutions of the model is non-positive, although determination be-

comes very challenging for models with high dimension.
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According to Korobeinikov (2004a), Korobeinikov (2004b), Korobeinikov (2007), for models

with relapse, that is SEIR and SEIS, the explicit Lyapunov function with the form

L =
∑

ai (xi − x∗i ln xi), (3.2)

is used.

In this chapter, we explore stability of equilibria of our SVEIRS (Susceptible, Vaccinated, Ex-

posed, Infectious, Recovered, Susceptible) mathematical model of YF by Kung’aro et al. (2014)

from chapter two.

3.2 Materials and Methods

3.2.1 Model Analysis

Recalling our disease-free equilibrium, (E0), and basic reproduction number, (R0), from chap-

ter two by Kung’aro et al. (2014), we now analyse the Stability of E0, and investigate existence

and stability of disease endemic equilibrium (EE).E0 is obtained by setting the derivatives with

respect to time of the model system (2.6), equal to zero (refer chapter two). Thus, the following

E0 is obtained:

E0 =

(
bh + (1− ρ)σ + ω

ω + ε+ bh + σ
,

ρσ + ε

ω + ε+ bh + σ
, 0, 0, 0, 1, 0, 0, 1, 0, 0

)
(3.3)

3.2.2 The Basic Reproduction Number, R0

One of the most important concerns in the analysis of epidemiological models is the determi-

nation of the asymptotic behaviour of their solutions which is usually based on the stability of

the associated equilibria (Moghadas, 2004). Calculation from chapter two shows a threshold
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parameter of the form R2
0 = Rhv +Rvm or R0 =

√
Rhv +Rvm, such that;

Rhv =
(bh + σ(1− ρ) + ω)a2β1β2δhδv

(ω + ε+ bh + σ)(δh + bh + σ)(γ + α + bh + σ)bv(δv + bv)
(3.4)

which is the reproduction number of human-vector compartments and represents the infection

from vector to human and human to vector. And,

Rmv =
a2β3β4δvδm

bm(δm + bm)bv(δv + bv)
(3.5)

as the reproduction number of monkey-vector compartments. It represents the infection from

monkey to vector and vector to monkey. In compact form, the following R0 was obtained.

R0 =

√
a2β1β2δhδvs

◦
h

(δh + bh + σ)(γ + α + bh + σ)bv(δv + bv)
+

a2β3β4δvδm
bm(δm + bm)bv(δv + bv)

(3.6)

where s◦h =
bh + (1− ρ)σ + ω

ω + ε+ bh + σ
from the first component of E0 in (3.3) (Kung’aro et al., 2014).

3.2.3 Stability Analysis of E0

We determine condition under which the equilibrium points are asymptotically stable or unsta-

ble. Asymptotic stability implies that a solution starts close to the equilibrium, remains close to

the equilibrium and approaches the equilibrium over time 0 ≤ t < ∞, while instability of the

equilibrium implies that there are solutions starting arbitrary close to the equilibrium, but they

do not approach it over indefinite time. However, if nearby initial conditions of a fixed point

remain close to that point over a positive time, then the fixed point is said to be locally stable

and if it remains close over indefinite time, it is said to be globally stable.
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Local Stability Analysis

The local stability of the disease-free equilibrium is determined based on a threshold parameter,

known as the basic reproductive number, R0. To establish local stability of this equilibrium,

the Jacobian of the model system (2.6) is computed and evaluated at E0. The local stability of

E0 is then determined based on the trace-determinant approach of this Jacobian. The disease-

free equilibrium point, E0, is locally stable if trace of the Jacobian matrix is less than zero and

determinant of the same matrix is greater than zero.

Thus, by letting the functions (f1, f2, ..., f11), to represent the right hand sides of the model

equations (2.6), at steady state the Jacobian of (2.6) is given by:

Ji =
∂fi
∂xj

, (3.7)

where,

fi , i = 1, 2, ..., 11. and xj(j = 1, 2, ..., 11) represent sh, vh, eh, ih, rh, sv,

ev, iv, sm, em, im, respectively. The following matrix is obtained;

JE0 =



−b1 ω 0 αs◦h ω 0 0 −η 0 0 0

ε −b2 0 αvoh 0 0 0 0 0 0 0

0 0 −b3 0 0 0 0 η 0 0 0

0 0 δh −b4 0 0 0 0 0 0 0

0 0 0 γ −b5 0 0 0 0 0 0

0 0 0 0 0 −bv 0 0 0 0 −aβ3
0 0 0 0 0 0 −b7 0 0 0 aβ3

0 0 0 0 0 0 δv −bv 0 0 0

0 0 0 0 0 0 0 −aβ4 −bm 0 0

0 0 0 0 0 0 0 aβ4 0 −b10 0

0 0 0 0 0 0 0 0 0 δm −bm


, (3.8)

note that, b1 = (ε+ bh + σ), b2 = (ω + bh + σ), b3 = (δh + bh + σ), η = aβ1s
◦
h,

b4 = (α + γ + bh + σ), b5 = (ω + bh + σ), b7 = (δv + bv), b10 = (δm + bm).
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As seen from (3.8) trace of JE0 < 0. Also, by reducing the dimensions of matrix JE0 and

calculation, we obtain sub-matrix

M = (bvbm)



−b1 ω 0 αs◦h ω 0 −η 0 0

ε −b2 0 αvoh 0 0 0 0 0

0 0 −b3 0 0 0 η 0 0

0 0 δh −b4 0 0 0 0 0

0 0 0 γ −b5 0 0 0 0

0 0 0 0 0 0 −b7 0 aβ3

0 0 0 0 0 δv −bv 0 0

0 0 0 0 0 0 aβ4 −b10 0

0 0 0 0 0 0 0 δm −bm


. (3.9)

Determinant of M is given by

det M = B[bv(δv + bv)bm(δm + bm)− a2β3β4δvδm)], (3.10)

where B = bvbm(b1b2 − εω)(b5b4b3). Further simplification leads to

det M = B [1−Rmv] bv(δv + bv)bm(δm + bm). (3.11)

For det M to be > 0 we should have Rmv < 1 which leads to the following theorem.

Theorem 3.3. The disease-free equilibrium point E0 of model system (2.6) is locally asymp-

totically stable if Rmv < 1 and unstable if Rmv > 1.

The epidemiological implication of Theorem 3.3 is that the YF infection can be mitigated from

the community (when Rmv < 1), that is, if the initial sizes of the sub-population of the model

system (2.6) are in basin of attraction of the DFE, E0. The threshold quantity, R0, represents

the average number of secondary infections that one infected individual (or infected vector) can

generate if introduced into a completely-susceptible population.
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Global Stability Analysis

We address the issue of global asymptotic stability of the disease-free equilibrium, and give a

sufficient condition for the global asymptotic stability for the DFE of YF. For some systems we

can show that the global asymptotic stability (GAS) of the DFE is equivalent to R0 ≤ 1. Thus

we can state the following theorem;

Theorem 3.4. The DFE, E0 of the YF model system given by (2.6) is globally asymptotically

stable (GAS) if R0 ≤ 1.

Proof. To prove the theorem, we will use the equations of the normalised model system (2.6)

and approach by Kamgang and Sallet (2008) and Dumont et al. (2008), it is possible to rewrite

(2.6) in the following manner;


dXs

dt
= A1(x)(Xs −XDFE,s) + A3(x)Xi

dXi

dt
= A2(x)Xi

(3.12)

where Xs is the vector representing the state of different compartments of non-transmitting

individuals (e.g. susceptible, vaccinated, immune) and the vector Xi represents the state of

compartments of different transmitting individuals (e.g. exposed, infected). Here, we have

Xs = (sh, vh, rh, sv, sm)T , Xi = (eh, ih, ev, iv, em, im)T , (3.13)

and

XDFE,s = (nh, 0, sv, sm). (3.14)

with

A1(x) =


−(ε+ bh + σ) ω ω 0 0

ε −(ω + bh + σ) 0 0 0

0 0 −(ω + bh + σ) 0 0

0 0 0 −bv 0

0 0 0 0 −bm

 , (3.15)
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A3(x) =


0 αsh 0 −aβ1sh 0 0

0 αvh 0 0 0 0

0 γ 0 0 0 0

0 −aβ2sv 0 0 0 aβ3sv

0 0 0 −aβ4sm 0 0

 , (3.16)

and

A2(x) =


−k1 0 0 aβ1sh 0 0

δh −k2 0 0 0 0

0 aβ2sv −(δv + bv) 0 0 aβ3sv

0 0 δv −bv 0 0

0 0 0 aβ4sm −(δm + bm) 0

0 0 0 0 δm −bm

 , (3.17)

where k1 = δh + bh + σ and k2 = α + γ + bh + σ. A direct computation shows that the

eigenvalues of A1(x) are real and negative. Thus, the system

dXs

dt
= A1(x)(Xs −XDFE,s) + A3(x)Xi, (3.18)

is globally asymptotically stable at XDFE .

To check the stability of systemA2(x), we are going to employ the idea of stable Metzler matrix

and use the lemma by Kamgang and Sallet (2008) and Dumont et al. (2008). A Metzler matrix

A is a matrix such that A(i, j) > 0, for any indices i 6= j (Jacquez and Simon, 1993; Berman

and Plemmons, 1979). These matrices are also called quasi-positive matrices or matrices whose

off diagonal elements are non-negative.

Lemma 3.5. Let Z be a square Metzler matrix written in block form

Z =

(
P Q

R S

)

P and S are square matrices. Z is Metzler stable if and only if the matrices P and S−RP−1Q

are Metzler stable.
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Proof. Comparing our matrix A2(x) and a square Metzler matrix Z, we have matrices P,Q,R

and S defined as;

P =

 −(δh + bh + σ) 0 0

δh −(α+ γ + bh + σ) 0

0 aβ2 −(δv + bv)

 , (3.19)

Q =

 aβ1s◦h 0 0

0 0 0

0 0 aβ2

 , R =

 0 0 δv

0 0 0

0 0 0

 , S =

 −bv 0 0

aβ4 −(δm + bm) 0

0 δm −bm

 .
Clearly, P is a stable Metzler matrix.

Then, after some computations we obtain

S −RP−1Q =

 k3 0
δvaβ2

δv + bv
aβ4 −(δm + bm) 0

0 δm −bm

 , (3.20)

where k3 = −bv +
δvδha

2β1β2s
◦
h

(δh + bh + σ)(α + γ + bh + σ)(δv + bv)
.

Thus, (S −RP−1Q) is Metzler stable iff

− bv +
δvδha

2β1β2s
◦
h

(δh + bh + σ)(α + γ + bh + σ)(δv + bv)
< 0. (3.21)

that is,
δvδha

2β1β2s
◦
h

(δh + bh + σ)(α + γ + bh + σ)(δv + bv)
< bv,

and so,
δvδha

2β1β2s
◦
h

(δh + bh + σ)(α + γ + bh + σ)bv(δv + bv)
< 1, (3.22)

=⇒ Rhv < 1.

Thus, the DFE, E0 is globally asymptotically stable if Rhv < 1 and unstable if Rhv > 1.

Thus, if the number of human new infections is greater than one, then the disease will persist.

Alternatively, if the number of human new infections is less than one, then the disease will die
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out. Essentially, we need to find ways of making sure that the number of newly human infected

does not exceed one.

3.2.4 Endemic Equilibrium (EE) Point

In the presence of infection in the population, the model system (2.6) has an equilibrium point

called disease endemic equilibrium point denoted by P ∗. P ∗ as the endemic equilibrium de-

notes the fraction of the population that is infected at an infinite time in the future and is given

by;

P ∗ = (s∗h, v
∗
h, e
∗
h, i
∗
h, r
∗
h, s
∗
v, e
∗
v, i
∗
v, s
∗
m, e

∗
m, i

∗
m).

Thus using model system (2.6), we can express each variable in terms of the other in endemic

equilibrium as follows;

s∗h =
bh + (1− ρ)σ + ω(v∗h + r∗h)

aβ1i∗v + (ε+ bh + σ)− αi∗h
, v∗h =

ρσ + εs∗h
(ω + bh + σ)− αi∗h

,

e∗h =
aβ1s

∗
hi
∗
v

(δh + bh + σ)− αi∗h
, i∗h =

δhe
∗
h

(α + γ + bh + σ)− αi∗h
,

r∗h =
γi∗h

(ω + bh + σ)− αi∗h
, s∗v =

bv
(aβ2i∗h + aβ3i∗m) + bv

,

e∗v =
(aβ2s

∗
vi
∗
h + aβ3s

∗
vi
∗
m)

(δv + bv)
, i∗v =

δve
∗
v

bv
,

s∗m =
bm

(aβ4i∗v + bm)
, e∗m =

(aβ4s
∗
mi
∗
v)

(δm + bm)
, i∗m =

δme
∗
m

bm
.

3.2.5 Stability Analysis of EE

Since the DFE is locally asymptotically stable in Φ, this suggests the local stability of the EE

for the reverse condition (Van den Driessche and Watmough, 2002). Hence, we only need to

investigate the global stability of the EE. Thus, the crucial question of whether the long-term
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disease dynamics approaches an equilibrium and how this depends on the initial size of the

infection, need to be answered.

As Tian and Wang (2011) pointed out that the study of global stability of EE is not only math-

ematically important, but also essential in predicting the evolution of the disease in the long

run so that prevention and intervention strategies can be effectively designed, and public health

administrative efforts can be properly scaled.

3.3 Global stability of EE

We explore the global stability of the EE through construction of a suitable Lyapunov function

using the approach by McCluskey (2006), Korobeinikov (2004a), Fall et al. (2007), Mpeshe

et al. (2011) and Ullah et al. (2013). In this approach we construct Lyapunov function basing

on the following form:

L =
∑

ai (xi − x∗i ln xi), (3.23)

where ai is the constant selected properly, that is ai > 0, xi is the population of the ith com-

partment and x∗i is the equilibrium point, and for this case, it is an endemic equilibrium. The

approach has been found to be useful for SEIR compartmental epidemic models regardless

number of compartments (Korobeinikov, 2004a).

Thus, consider the Lyapunov function

L = a1 (sh − s∗h ln sh) + a2 (vh − v∗h ln vh) + a3 (eh − e∗h ln eh)

+ a4 (ih − i∗h ln ih) + a5 (rh − r∗h ln rh) + a6 (sv − e∗v ln ev)

+ a7 (ev − e∗v ln ev) + a8 (ih − i∗h ln ih) + a9 (sm − s∗m ln sm)

+ a10 (em − e∗m ln em) + a11 (im − i∗m ln im),

(3.24)
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where ai > 0 for i = 1, 2, ...11.

Analysing in three different compartments for human, vector and primate respectively we have;

Lh(sh, vh, eh, ih, rh) = a1 (sh − s∗h ln sh) + a2 (vh − v∗h ln vh)

+ a3 (eh − e∗h ln eh) + a4 (ih − i∗h ln ih)

+ a5 (rh − r∗h ln rh).

(3.25)

Differentiating (3.25) with respect to time we get

dLh
dt

= a1

[
1− s∗h

sh

]
dsh
dt

+ a2

[
1− v∗h

vh

]
dvh
dt

+ a3

[
1− e∗h

eh

]
deh
dt

+ a4

[
1− i∗h

ih

]
dih
dt

+ a5

[
1− r∗h

rh

]
drh
dt
,

= a1

(
1− s∗h

sh

)[
bh + σ(1− ρ) + ωvh + ωrh − aβ1shiv − sh(ε+ bh + σ) + αshih

]
+ a2

(
1− v∗h

vh

)[
ρσ + εsh − vh(ω + bh + σ) + αvhih

]
+ a3

(
1− e∗h

eh

)[
aβ1shiv − eh(δh + bh + σ) + αehih

]
+ a4

(
1− i∗h

ih

)[
δheh − ih(γ + α + bh + σ) + αi2h

]
+ a5

(
1− r∗h

rh

)[
γih − rh(ω + bh + σ) + αrhih

]
.
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At endemic equilibrium point (P ∗), we have

dLh
dt

= a1

(
1− s∗h

sh

)[
(aβ1i

∗
v + ε+ bh + σ)s∗h − ω(v∗h + r∗h)− αs∗hi∗h

+ ω(vh + rh)− aβ1shiv − sh(ε+ bh + σ) + αshih

]
+ a2

(
1− v∗h

vh

)[
v∗h(ω + bh + σ)− εs∗h − αv∗hi∗h

+ εsh − vh(ω + bh + σ) + αvhih

]
+ a3

(
1− e∗h

eh

)[
aβ1shiv − eh

(
aβ1s

∗
hi
∗
v + αe∗hi

∗
h

e∗h

)
+ αehih

]
+ a4

(
1− i∗h

ih

)[
δheh − ih

(
δhe
∗
h + αi∗2h
i∗h

)
+ αi2h

]
+ a5

(
1− r∗h

rh

)[
γih − rh

(
γi∗h + αr∗hi

∗
h

r∗h

)
+ αrhih

]
.

Further simplification yields

dLh
dt

= −a1

(
ε+ bh + σ

)
sh

(
1− s∗h

sh

)2

− a1

(
1− s∗h

sh

)[
aβ1shiv

(
1− i∗vs

∗
h

ivsh

)
− αshih

(
1− i∗hs

∗
h

ihsh

)
− ωvh

(
1− v∗h

vh

)
− ωrh

(
1− r∗h

rh

)]
− a2

(
ω + bh + σ

)
vh

(
1− v∗h

vh

)2

− a2

(
1− v∗h

vh

)[
εs∗h

(
1− sh

s∗h

)
+ αv∗hi

∗
h

(
1− vhih

v∗hi
∗
h

)]
−a3

e∗h

(
1− e∗h

eh

)[
aβ1s

∗
hehi

∗
v

(
1− shive

∗
h

s∗hi
∗
veh

)
− αehihe∗h

(
1− i∗h

ih

)]
−a4

i∗h

(
1− i∗h

ih

)[
δhe
∗
hih

(
1− ehi

∗
h

e∗hih

)
− αi∗hi2h

(
1− i∗h

ih

)]
−a5

r∗h

(
1− r∗h

rh

)[
rhγi

∗
h

(
1− ihr

∗
h

i∗hrh

)
− αrhihr∗h

(
1− i∗h

ih

)]
,
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which can also be written as

dLh
dt

= −a1

(
ε+ bh + σ

)
sh

(
1− s∗h

sh

)2

− a2

(
ω + bh + σ

)
vh

(
1− v∗h

vh

)2

+ Fh(sh, vh, eh, ih, rh),

(3.26)

where

Fh = −a1

(
1− s∗h

sh

)[
aβ1shiv

(
1− i∗vs

∗
h

ivsh

)
− αshih

(
1− i∗hs

∗
h

ihsh

)
− ωvh

(
1− v∗h

vh

)
− ωrh

(
1− r∗h

rh

)]
− a2

(
1− v∗h

vh

)[
εs∗h

(
1− sh

s∗h

)
+ αv∗hi

∗
h

(
1− vhih

v∗hi
∗
h

)]
−a3

e∗h

(
1− e∗h

eh

)[
aβ1s

∗
hehi

∗
v

(
1− shive

∗
h

s∗hi
∗
veh

)
− αehihe∗h

(
1− i∗h

ih

)]
−a4

i∗h

(
1− i∗h

ih

)[
δhe
∗
hih

(
1− ehi

∗
h

e∗hih

)
− αi∗hi2h

(
1− i∗h

ih

)]
−a5

r∗h

(
1− r∗h

rh

)[
rhγi

∗
h

(
1− ihr

∗
h

i∗hrh

)
− αrhihr∗h

(
1− i∗h

ih

)]
.

(3.27)

Again by differentiating the Lyapunov function of vector and monkey populations, we can show

their analysis respectively as

Lv(sv, ev, iv) = a6 (sv − s∗v ln sv) + a7 (ev − e∗v ln ev) + a8 (iv − i∗v ln iv), (3.28)
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into which time derivative of Lv yields

dLv
dt

= a6

[
1− s∗v

sv

]
dsv
dt

+ a7

[
1− e∗v

ev

]
dev
dt

+ a8

[
1− i∗v

iv

]
div
dt

= a6

(
1− s∗v

sv

)[
bv − (aβ2svih + aβ3svim)− svbv

]
+ a7

(
1− e∗v

ev

)[
aβ2svih + aβ3svim − ev(δv + bv)

]
+ a8

(
1− i∗v

iv

)[
δvev − ivbv

]
.

At P ∗, we have

dLv
dt

= a6

(
1− s∗v

sv

)[
aβ2s

∗
vi
∗
h + aβ3s

∗
vi
∗
m + s∗vbv − aβ2svih − aβ3svim − svbv

]
+ a7

(
1− e∗v

ev

)[
aβ2svih + aβ3svim − ev

(
aβ2s

∗
vi
∗
h + aβ3s

∗
vi
∗
m

e∗v

)]
+ a8

(
1− i∗v

iv

)[
δvev − iv

(
δve
∗
v

i∗v

)]
.

Further simplification yields

dLv
dt

= −a6

(
1− s∗v

sv

)2

bvsv − a6

(
1− s∗v

sv

)[
aβ2svih

(
1− s∗vi

∗
h

svih

)
+ aβ3svim

(
1− s∗vi

∗
m

svim

)]
− a7

e∗v

(
1− e∗v

ev

)[
aβ2s

∗
vi
∗
hev(

1− svihe
∗
v

s∗vi
∗
hev

)
+ aβ3evs

∗
vi
∗
m

(
1− e∗vsvim

evs∗vi
∗
m

)]
− a8

i∗v

(
1− i∗v

iv

)[
ivδve

∗
v

(
1− evi

∗
v

e∗viv

)]
,

which can also be written as

dLv
dt

= −a6

(
1− s∗v

sv

)2

bvsv + Fv(sv, ev, iv), (3.29)
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where

Fv = −a6

(
1− s∗v

sv

)[
aβ2svih

(
1− s∗vi

∗
h

svih

)
+ aβ3svim

(
1− s∗vi

∗
m

svim

)]
− a7

e∗v

(
1− e∗v

ev

)[
aβ2s

∗
vi
∗
hev

(
1− svihe

∗
v

s∗vi
∗
hev

)
+ aβ3evs

∗
vi
∗
m(

1− e∗vsvim
evs∗vi

∗
m

)]
− a8

i∗v

(
1− i∗v

iv

)[
ivδve

∗
v

(
1− evi

∗
v

e∗viv

)]
.

(3.30)

Similarly,

Lm(sm, em, im) = a9(sm − s∗m ln sm) + a10(em − e∗m ln em) + a11(im − i∗m ln im), (3.31)

which gives

dLm
dt

= a9

[
1− s∗m

sm

]
dsm
dt

+ a10

[
1− e∗m

em

]
dem
dt

+ a11

[
1− i∗m

im

]
dim
dt

= a9

(
1− s∗m

sm

)[
bm − aβ4smiv − smbm

]
+ a10

(
1− e∗m

em

)[
aβ4smiv − em(δm + bm)

]
+ a11

(
1− i∗m

im

)[
δmem − imbm

]
.

At P ∗, we also have

dLm
dt

= a9

(
1− s∗m

sm

)[
aβ4s

∗
mi
∗
v + s∗mbm − aβ4smiv − smbm

]
+ a10

(
1− e∗m

em

)[
aβ4smiv − em

(
aβ4s

∗
mi
∗
v

e∗m

)]
+ a11

(
1− i∗m

im

)[
δmem − im

(
δme

∗
m

i∗m

)]
.
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Again, further simplification yields

dLm
dt

= −a9

(
1− s∗m

sm

)2

bmsm − a9

(
1− s∗m

sm

)[
aβ4smiv

(
1− s∗mi

∗
v

smiv

)]
− a10

e∗m

(
1− e∗m

em

)[
aβ4s

∗
mi
∗
vem

(
1− smive

∗
m

s∗mi
∗
vem

)]
− a11

i∗m

(
1− i∗m

im

)[
imδme

∗
m

(
1− emi

∗
m

e∗mim

)]
,

which can also be written as

dLm
dt

= −a9

(
1− s∗m

sm

)2

bmsm + Fm(sm, em, im), (3.32)

where

Fm = −a9

(
1− s∗m

sm

)[
aβ4smiv

(
1− s∗mi

∗
v

smiv

)]
− a10

e∗m

(
1− e∗m

em

)[
aβ4s

∗
mi
∗
vem

(
1− smive

∗
m

s∗mi
∗
vem

)]
− a11

i∗m

(
1− i∗m

im

)[
imδme

∗
m

(
1− emi

∗
m

e∗mim

)]
.

(3.33)

Thus, considering equations (3.26), (3.29) and (3.32) we can have
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dL

dt
=
dLh
dt

+
dLv
dt

+
dLm
dt

,

= −a1

(
ε+ bh + σ

)
sh

(
1− s∗h

sh

)2

− a2

(
ω + bh + σ

)
vh

(
1− v∗h

vh

)2

+ Fh
(
sh, vh, eh, ih, rh

)
− a6

(
1− s∗v

sv

)2

bvsv + Fv(sv, ev, iv)

− a9

(
1− s∗m

sm

)2

bmsm + Fm(sm, em, im),

(3.34)

which can be written as

dL

dt
= −a1

(
ε+ bh + σ

)
sh

(
1− s∗h

sh

)2

− a2

(
ω + bh + σ

)
vh

(
1− v∗h

vh

)2

− a6

(
1− s∗v

sv

)2

bvsv − a9

(
1− s∗m

sm

)2

bmsm

+ F (sh, vh, eh, ih, rh, sv, ev, iv, sm, em, im),

(3.35)
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where

F = −a1

(
1− s∗h

sh

)[
aβ1shiv

(
1− i∗vs

∗
h

ivsh

)
− αshih

(
1− i∗hs

∗
h

ihsh

)
− ωvh

(
1− v∗h

vh

)
− ωrh

(
1− r∗h

rh

)]
− a2

(
1− v∗h

vh

)[
εs∗h

(
1− sh

s∗h

)
+ αv∗hi

∗
h

(
1− vhih

v∗hi
∗
h

)]
−a3

e∗h

(
1− e∗h

eh

)[
aβ1s

∗
hehi

∗
v

(
1− shive

∗
h

s∗hi
∗
veh

)
− αehihe∗h

(
1− i∗h

ih

)]
−a4

i∗h

(
1− i∗h

ih

)[
δhe
∗
hih

(
1− ehi

∗
h

e∗hih

)
− αi∗hi2h

(
1− i∗h

ih

)]
−a5

r∗h

(
1− r∗h

rh

)[
rhγi

∗
h

(
1− ihr

∗
h

i∗hrh

)
− αrhihr∗h

(
1− i∗h

ih

)]
− a6

(
1− s∗v

sv

)[
aβ2svih

(
1− s∗vi

∗
h

svih

)
+ aβ3svim

(
1− s∗vi

∗
m

svim

)]
− a7

e∗v

(
1− e∗v

ev

)[
aβ2s

∗
vi
∗
hev

(
1− svihe

∗
v

s∗vi
∗
hev

)
+ aβ3evs

∗
vi
∗
m(

1− e∗vsvim
evs∗vi

∗
m

)]
− a8

i∗v

(
1− i∗v

iv

)[
ivδve

∗
v

(
1− evi

∗
v

e∗viv

)]
− a9

(
1− s∗m

sm

)[
aβ4smiv

(
1− s∗mi

∗
v

smiv

)]
− a10

e∗m

(
1− e∗m

em

)[
aβ4s

∗
mi
∗
vem

(
1− smive

∗
m

s∗mi
∗
vem

)]
− a11

i∗m

(
1− i∗m

im

)[
imδme

∗
m

(
1− emi

∗
m

e∗mim

)]
.

(3.36)

As it is seen in equations (3.35) and (3.36), F is non-positive by following the approach of

Mukandavire et al. (2009) and McCluskey (2006).

Thus, F ≤ 0 for sh, vh, eh, ih, rh, sv, ev, iv, sm, em, im > 0.

Hence
dL

dt
≤ 0 for all sh, vh, eh, ih, rh, sv, ev, iv, sm, em, im > 0. and is zero when

sh = s∗h, vh = v∗h, eh = e∗h, ih = i∗h, rh = r∗h, sv = s∗v, ev = e∗v, iv = i∗v

sm = s∗m, em = e∗m, im = i∗m.
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Therefore, the largest compact invariant set in Φ such that
dL

dt
= 0 is the singleton P ∗ which is

the endemic equilibrium point.

LaSalles invariant principle (LaSalle, 1976) guarantees that P ∗ is globally asymptotically stable

(GAS) in
◦
Φ, the interior of Φ. Thus, we have established the following theorem;

Theorem 3.6. If R0 > 1, then, model system (2.6) has a unique EE point which is globally

asymptotically stable (GAS) in
◦
Φ.

3.4 Discussions and Conclusion

In this chapter, the model considered in chapter two is used. The model is analysed for the

existence and stabilities of disease-free and endemic equilibrium points.

Stability of DFE point E0 was established using the threshold parameter, R0, whereby local

stability of the E0 was established using trace-determinant approach of the Jacobian matrix of

the model system (2.6), while Metzler matrix approach is used to carry out global stability anal-

ysis of E0. It is found that the disease-free equilibrium point is locally asymptotically stable if

Rmv < 1 and unstable ifRmv > 1. Also, it is established that the disease-free equilibrium point

is globally stable if Rvh < 1 and unstable otherwise. Since the disease threshold parameter

had the form R0 =
√
Rhv +Rvm, and from the local and global stabilities of the disease-free

equilibrium point, we can generally conclude that the disease-free equilibrium point is stable

locally and globally if and only if R0 < 1 so that the disease always dies out. For R0 > 1, the

disease-free equilibrium point is unstable while the endemic equilibrium emerges as a unique

equilibrium point, thus re-invasion is always possible and the disease never dies out. The result

is similar with other researchers from the literature like Kamgang and Sallet (2008), Moghadas

(2004), Van den Driessche and Watmough (2002), Diekmann and Heesterbeek (2000).
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We further analysed the stability of EE point using a suitable Lyapunov function. Results show

that a unique endemic equilibrium point exists and is globally stable when R0 > 1. Thus,

there is need to find ways of preventing infection and re-infection from monkeys population

if we are to completely curb the disease. The results of this study indicate that the Lyapunov

functions of the form L(x1, x2, ...xn) =
∑
ai (xi−x∗i ln xi) can be useful especially for SEIR

and/or compartmental human-vector and human-vector-monkeys models with many number of

compartments. Our result are similar with other researchers like Ullah et al. (2013), Mpeshe

et al. (2011), Korobeinikov (2004a) among others.

This analysis enables us to gain valuable insights and it introduces an important step in theo-

retical analysis of the disease. The vector being at the middle part of human host and monkeys

and the transmitters of the YFV to both hosts need to be controlled to make the human host free

from the infection. Thus, interventional strategies are suggested important to reduce the span

of the lives of parasites and vectors.

Moreover, numerous additions in the model will be required in order to provide further insights

in assessing the impact, dynamics and transmissions of YFV like temperature variations and

vertical transmission of the vector for preventing the epidemic. However, as pointed out by

Monath (2006) vaccination could remain as the single most important measure for preventing

YF. Although there are some scenarios that would require a large quantity of YF vaccine over a

short period, still it will remain as the only solution for prevention. Again, as noted by Dumont

et al. (2008) control of the YF mosquito (Aedes aegypti) is of a major importance, especially

because the same mosquito can transmit dengue fever and chikungunya disease.
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CHAPTER FOUR

Application of Optimal Control Strategies for the Dynamics of Yellow Fever3

Abstract: In this chapter, we present an application of optimal control theory to assess

the effectiveness of control measures on the dynamics of YF. We formulate and analyse a

deterministic mathematical model with personal protection, educational campaign and spray

of insecticides as control variables using optimal control theory and Pontryagins Maximum

Principle. The optimal controls are characterized in terms of optimality system, and solved

numerically for several scenarios. Results show that multiple optimal control measures is the

most effective strategy to bring a stable disease-free situation compared to a single control.

However, spray of insecticides alone was seen as not effective without personal protection, and

optimal use of personal protection alone might be beneficial to minimize transmission of the

infection to the community.

Keywords: Yellow fever, optimal control, personal protection, educational campaign, spray of

insecticides.

2010 AMS Subject Classification: 92B05.

3 This chapter is based on the published paper:
Kung’aro, M., Luboobi, L. S., and Shahada, F. (2015). Application of optimal control strategies for the dynam-

ics of yellow fever. Journal of Mathematical and Computational Science, 5(3): 430-453
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4.1 Introduction

Outbreaks of vector borne diseases like malaria, yellow fever (YF) and dengue that are trans-

mitted to humans by blood-sucker mosquito have devastated several countries around the world

(Misra et al., 2013). Thus, modelling their dynamics and control has gained enormous attention.

Most infectious diseases could be eradicated, if adequate and timely steps (for example vac-

cination, treatment, educational and enlightenment campaign) are taken in the course of the

epidemic. However, many of these diseases eventually become endemic in our societies due to

lack of adequate policies and timely interventions to mitigate the spread of them.

YF, in particular, is a viral haemorrhagic fever caused by yellow fever virus (YFV) and is

transmitted through the bite of an infected female yellow fever mosquito (Robertson et al.,

1996). Humans and primates are the principle reservoirs for YF virus and the vector, female

YF mosquito (Aedes aegypti) is the only transmitting agent of this virus to urban settings.

The study of optimal control strategies in epidemiological models have been of much interest

for informed decision-making. Over years, mathematical models of the spread of infectious dis-

eases have been used to provide important insights into disease behaviour and optimal control

strategies. For some diseases, medical treatments can be given to patients to cure the infection

but there may not be vaccine to immunize susceptible individuals (e.g. Malaria). For a few

other diseases, there is no cure but individuals can be vaccinated against getting infection (e.g.

Polio, YF).

Optimal control theory has been applied to a number of studies in mathematical models of

vector-borne diseases including malaria (Okosun and Makinde, 2013; Lashari et al., 2012),

chikungunya (Moulay et al., 2012), dengue (Rodrigues et al., 2012), rift valley fever (Mpeshe

et al., 2014a), among others. Regarding to YF few studies have been done to address transmis-

sion dynamics like in Amaku et al. (2011), Johansson et al. (2010), Shustov and Mason (2007)
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and Monath and Cetron (2002), but not addressing control strategies of the infection. In these

studies theoretical and statistical models have been used.

Recently, Kung’aro et al. (2014) used a mathematical model in addressing YF transmission dy-

namics between primates and human being, into which model parameters and factors affecting

diseases transmission were discussed. Nothing has been done to address control strategies of

YF.

Thus, in this research we formulate an optimal control model for YF aiming at deriving op-

timal control strategies with minimum implementation cost. We extend the current model by

Kung’aro et al. (2014) by introducing time-dependent control efforts on prevention or person-

al protection, educational campaign and spray of insecticides efforts as controls to curtail the

spread of YF. We use Pontryagins Maximum Principle in deriving the optimal control and

Fleming (1975) and Lukes (1982) in proving the existence of an optimal control.

4.2 Materials and Methods

4.2.1 Model Formulation

Control terms are added to the existing deterministic mathematical model for YF transmission

dynamics by Kung’aro et al. (2014) as shown in Figure 4.1, where the monkeys, m, are now

represented by primates, p. Three populations are considered in the model (humans, vector and

primates) with the total population sizes at time t given by Nh(t), Nv(t) and Np(t) respectively.

The populations are further compartmentalized into epidemiological classes whereby human

population is divided into 5 classes: susceptible, Sh , vaccinated, Vh, exposed, Eh, infectious,

Ih and recovered (immune), Rh.

Vector and primates population are divided into 3 classes each: susceptible, exposed, and in-

fectious. They do not include the immune class as they never recover from the infection, that is
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Figure 4.1: Model flow diagram for transmission dynamics of YF under control measures.

their infective period ends with their death due to their relatively short life cycle compared to

humans.

We consider three control efforts, prevention or personal protection and educational campaign

to human host, and spray of insecticides against the vector. We use the control mechanism-

s ui(t) in human host and vector populations, where 1 − ui(t) is the failure probability of the

control mechanism ui(t) for i = 1; 2; 3. In the model the control mechanism u1(t) and u2(t) rep-

resents prevention/personal protection and educational campaign respectively to human hosts

and u3(t) represents spray of insecticides against the vector.

In the human population, prevention or personal protection includes, the use of mosquito treat-

ed bed-nets, use of mosquito coils, indoor residual spraying and use of mosquito repellents.

All these things are done in order to minimize or eliminate vector-human contacts. Thus, the
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associated force of infection to human from vector and vice versa is reduced by a factor of

1− u1.

Educational campaign is done to the human populations in such a way that upon its successful

efforts, more susceptible human individuals will be motivated to vaccination before the occur-

rence of the disease making the vaccination rate, ε, to be increased by a factor 1 + u2. Also,

infectious human individuals will be encouraged and motivated to get immunity by treating

any other infection in their bodies. That is to say a large number of infectious humans will be

recover and hence the recovery rate, γ, will also be increased by a factor 1 + u2.

Spray of insecticides against the vector is done to larvacide and adultcide and applied to those

places where vector bleeding occurs in order to control vector population. It is assumed that

application of insecticides will increase the death rate of vector in each compartment at a rate

proportional to u3(t), and hence automatically reduce the reproduction rate (Blayneh et al.,

2010). We take these rates to be µv(t)u3(t)Sv(t), µv(t)u3(t)Ev(t) and µv(t)u3(t)Iv(t) for sus-

ceptible, latent and infectious vector respectively. That is to say mortality rate of mosquito

population, µv, is increased by a factor 1 +u3. Thus, we construct the optimal model equations

as follows:

Human:

dSh(t)

dt
= bhNh + (1− ρ)Λ + ω(Vh +Rh)− λvh(1− u1)− ε(1 + u2)Sh − µhSh,

dVh(t)

dt
= ρΛ + ε(1 + u2)Sh − ωVh − µhVh,

dEh(t)

dt
= λvh(1− u1)− δhEh − µhEh,

dIh(t)

dt
= δhEh − (µh + α)Ih − γIh(1 + u2),

dRh(t)

dt
= γIh(1 + u2)− ωRh − µhRh,

(4.1)
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Vector:
dSV (t)

dt
= bvNV − λhv(1− u1)− λpv − µvSV (1 + u3),

dEV (t)

dt
= λhv(1− u1) + λpv − δvEV − µvEV (1 + u3),

dIV (t)

dt
= δvEV − µvIV (1 + u3),

(4.2)

Primates:
dSp(t)

dt
= bpNp − λvp − µpSp,

dEp(t)

dt
= λvp − δpEp − µpEp,

dIp(t)

dt
= δpEP − µpIp,

(4.3)

where; λvh =
aβ1ShIv
Nv

, λhv =
aβ2SvIh
Nh

, λpv =
aβ3SvIp
Np

and λvp =
aβ4SpIp
Np

.

In the model the term λvh =
aβ1ShIv
Nv

denotes the rate at which susceptible human hosts Sh get

infected by the infected vector Iv (force of infection from vector to human), λhv =
aβ2SvIh
Nh

denotes the rate at which susceptible vector Sv get infected from the infected human host Ih

(infection force from human host to vector), λpv =
aβ3SvIp
Np

denotes the rate at which the

susceptible vector Sv get infected from the infected primate Ip (force of infection from primate

to vector) and the term λvp =
aβ4SpIv
Nv

denotes the rate at which the susceptible primates Sp

get infected from the infected vector Iv.

Thus, we define the total population sizes Nh(t), Nv(t) and Np(t) for human host, vector and

primates respectively as:

Nh(t) = Sh(t) + Vh(t) + Eh(t) + Ih(t) +Rh(t),

Nv(t) = Sv(t) + Ev(t) + Iv(t),

Np(t) = Sp(t) + Ep(t) + Ip(t).

(4.4)

Model systems (4.1), (4.2), (4.3) can be written together to form a single system of differential

equations (4.5).
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dSh
dt

= bhNh + (1− ρ)Λ + ω(Vh +Rh)−
aβ1ShIv
Nv

(1− u1)− ε(1 + u2)Sh − µhSh,
dVh
dt

= ρΛ + ε(1 + u2)Sh − ωVh − µhVh,
dEh
dt

=
aβ1ShIv
Nv

(1− u1)− δhEh − µhEh,
dIh
dt

= δhEh − (µh + α)Ih − γ(1 + u2)Ih,

dRh

dt
= γ(1 + u2)Ih − ωRh − µhRh,

dSv
dt

= bvNv −
aβ2SvIh
Nh

(1− u1)− aβ3SvIp
Np

− µvSv(1 + u3),

dEv
dt

=
aβ2SvIh
Nh

(1− u1) +
aβ3SvIp
Np

− δvEv − µvEv(1 + u3),

dIv
dt

= δvEv − µvIv(1 + u3),

dSp
dt

= bpNp −
aβ4SpIv
Nv

− µpSp,
dEp
dt

=
aβ4SpIv
Nv

− δpEp − µpEp,
dIp
dt

= δpEp − µpIp.

(4.5)

Parameters as they have been used in this study are described in Table 4.1:

Table 4.1: Description of parameters of the model system (4.5)
Symbol Description Value Reference
β1 Transmission probability of vector to human 0.8 Amaku et al. (2011); Dumont et al. (2008)
β2 Transmission probability of human to vector 0.8 Rodrigues et al. (2013); Nishiura (2006)
β3 Transmission probability of primate to vector 0.5 Kung’aro et al. (2014)
β4 Transmission probability of vector to primate 0.9 assumed
δh Progression rate from Eh to Ih 0.95 day−1 Garba et al. (2008); Esteva and Vargas (1998)
δv Progression rate from Ev to Iv 0.95 day−1 Amaku et al. (2011); Garba et al. (2008)
δp Progression rate from Ep to Ip 0.85 day−1 Kung’aro et al. (2014)
bh Daily birth rate of human 0.0003 assumed
bv Daily birth rate of vector 0.002 Bowman (2012)
bp Daily birth rate of primates 0.00004 assumed
a Daily bitting rate 0.5 Amaku et al. (2011); Dumont et al. (2008)
γ Recovery rate 0.005 Pinho et al. (2010); Codeço et al. (2007)
α Death rate due to disease for human 0.001 Pinho et al. (2010); Codeço et al. (2007)
ω rate of relapse of vaccinated and recovered human 0.05 Garba et al. (2008)
ε vaccination rate of susceptible human 0.5 day−1 Kung’aro et al. (2014)
ρ proportion of immigrant who are vaccinated 0.02 day−1 Garba et al. (2008)
Λ arrival rate of immigrant per individual per time 70 day−1 assumed
1

µh
lifespan of human 60 years Kung’aro et al. (2014); Mpeshe et al. (2011)

1

µv
lifespan of vector 40 days Moulay et al. (2012)

1

µp
lifespan of primates 10 years assumed
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4.2.2 The Optimal Control Problem

In model system (4.5), we seek to minimize the number of exposed and infectious human with

minimum implementation cost (that is the cost of applying control, personal protection, u1,

educational campaign, u2, and spray of insecticides, u3). Therefore for a terminal time tf , the

aim is to minimize the cost of objective functional

J(u1, u2, u3) =

∫ tf

0

(
A1Eh + A2Ih +B1u

2
1 +B2u

2
2 +B3u

2
3

)
dt, (4.6)

where, A1 and A2 are positive weight constants of the exposed and infectious humans respec-

tively; and B1, B2, B3 are the positive weight constants for the control mechanisms u1, u2, u3

respectively. However, with the idea of other researchers from the literature on epidemic con-

trols (Okosun and Makinde, 2013; Lashari et al., 2013; Hattaf and Yousfi, 2012; Lashari et al.,

2012; Makinde and Okosun, 2011; Jung et al., 2002), we choose a quadratic cost function of

the controls.

We also define B1u
2
1 as the cost of the control mechanism in human associated with personal

protection so as to minimize the vector human contacts; B2u
2
2 is the cost of the control efforts

on educational campaign to human host individuals and B3u
2
3 is the cost of control mechanism

in vectors associated with spraying of insecticide against vector to adulticide and larvacide, and

those places where vector breeding occurs.

Thus, we seek to obtain an optimal control (u∗1, u
∗
2, u
∗
3) such that;

J(u∗1, u
∗
2, u
∗
3) = min J(u1, u2, u3|u1, u2, u3 ∈ Γ), (4.7)

subject to system (4.5) where the control set is defined as Γ = {u1, u2, u3|ui(t) is a piece wise

continuous functions on [0, tf ] and that ai ≤ ui ≤ bi for i = 1, 2, 3}. Here ai and bi, are

constants in [0,1].
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In order to find an optimal solution, the basic framework of the problem is to state and prove

the existence of optimal control for the model system (4.5) and then characterize the optimal

control by deriving the optimality system.

4.2.3 Existence of an Optimal Control Problem

In this part, we state and prove the existence of optimal control using the existence results from

Fleming (1975) and Lukes (1982). We first state the following theorem;

Theorem 4.7. Consider the optimal control problem with model system (4.5) as state equa-

tions. There exists an optimal control u∗ = (u∗1, u
∗
2, u
∗
3) ∈ Γ such that

min
(u1,u2,u3)∈Γ

J(u1, u2, u3) = J(u∗1, u
∗
2, u
∗
3).

Proof. We note that the existence of an optimal control pair can be proved by using results from

Fleming (1975) theorem 4.1, we first need to check the following properties:

1. The set of controls and corresponding state variables is non-empty.

2. The control set Γ is convex and closed.

3. The right hand side of the state system is bounded by a linear function in the state and

control variables.

4. The integrand of the objective functional is convex.

5. There exist constants c1, c2 > 0, and α > 1 such that the integrand of the objective

functional is bounded below by c1 (|u1|2 + |u2|2 + |u3|2)
α
2 − c2.

Condition 1, is verified using results from Fleming (1975), Chapter III page 60, from them

existence is assured by the state equations and control variables; in our ODE’s model system
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(4.5), the state equations are;

dSh
dt

= bhNh + (1− ρ)Λ + ω(Vh +Rh)−
aβ1ShIv
Nv

(1− u1)− ε(1 + u2)Sh − µhSh,
dVh
dt

= ρΛ + ε(1 + u2)Sh − ωVh − µhVh,
dEh
dt

=
aβ1ShIv
Nv

(1− u1)− δhEh − µhEh,
dIh
dt

= δhEh − (µh + α)Ih − γ(1 + u2)Ih,

dRh

dt
= γ(1 + u2)Ih − ωRh − µhRh,

dSv
dt

= bvNv −
aβ2SvIh
Nh

(1− u1)− aβ3SvIp
Np

− µvSv(1 + u3),

dEv
dt

=
aβ2SvIh
Nh

(1− u1) +
aβ3SvIp
Np

− δvEv − µvEv(1 + u3),

dIv
dt

= δvEv − µvIv(1 + u3),

dSp
dt

= bpNp −
aβ4SpIv
Nv

− µpSp,
dEp
dt

=
aβ4SpIv
Nv

− δpEp − µpEp,
dIp
dt

= δpEp − µpIp.

(4.8)

and the control variables are (u1, u2, u3) ∈ Γ. The control set Γ is bounded by definition; hence

condition 2 is also satisfied. The RHS of the state system (4.5) satisfies condition 3 since the

state solutions are bounded.

The integrand of our objective functional is

A1Eh + A2Ih +B1u
2
1 +B2u

2
2 +B3u

2
3.

It is clearly convex on control set Γ, which gives condition 4.

Finally, there are constants c1, c2 > 0 and α > 1 satisfying

c1

(
|u1|2 + |u2|2 + |u3|2

)α
2 − c2,

because the state variables are bounded, which shows the existence of an optimal control solu-

tion.
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Hence, we conclude that there exists an optimal control (u∗1, u
∗
2, u
∗
3) that minimizes the objective

functional J(u1, u2, u3) which follows from the existence results by Fleming (1975).

4.2.4 Characterization of Optimal Control

With the existence of optimal control pair established, we now present the optimality system

and derive the necessary conditions using Pontryagin Maximum Principle (Pontryagin et al.,

1962). The aim of this principle is to minimize the objective function. To accomplish this, we

begin by defining a Lagrangian of our optimal control problem which is the Hamiltonian aug-

mented with penalty multipliers for the control constraints. Thus, we define the Hamiltonian,

H, for the control problem (4.5)-(4.6) as:

H = L(Eh, Ih, u1, u2, u3) +
∑
K

λKfK , (4.9)

where K is the set of state variables, that is Sh, Vh, ..., Ip; λK , (K = 1, 2, ..., 11) is the adjoint

functions of the Kth state variable, and fK is the right hand side of the differential equation of

the Kth state variable. This can be written as:

H = A1Eh + A2Ih +B1u
2
1 +B2u

2
2 +B3u

2
3 + λ1

dSh
dt

+ λ2
dVh
dt

+ λ3
dEh
dt

+ λ4
dIh
dt

+ λ5
dRh

dt
+ λ6

dSv
dt

+ λ7
dEv
dt

+ λ8
dIv
dt

+ λ9
dSp
dt

+ λ10
dEp
dt

+ λ11
dIp
dt
. (4.10)

Let Γ be set of controls, and Π be the set of adjoint variables, we define in more compact form

the Lagrangian (augmented Hamiltonian) for our optimal problem as:

L(K,Γ,Π) = H −
3∑
i=1

wij(ui(t)− ai)−
3∑
i=1

wij(bi − ui(t)) for j = 1, 2, (4.11)
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where wij(t) ≥ 0 are the penalty multipliers satisfying the following conditions

w11(t)(u1(t)− a1) = w12(t)(b1 − u1(t)) = 0 at optimal control u∗1,

w21(t)(u2(t)− a2) = w22(t)(b2 − u2(t)) = 0 at optimal control u∗2,

w31(t)(u3(t)− a3) = w32(t)(b3 − u3(t)) = 0 at optimal control u∗3.

The Lagrangian can be extended as;

L(K,Γ,Π) = A1Eh +A2Ih +B1u
2
1 +B2u

2
2 +B3u

2
3

+ λ1[bhNh + (1− ρ)Λ + ω(Vh +Rh)−
aβ1ShIv

Nv
(1− u1)− ε(1 + u2)Sh − µhSh]

+ λ2[ρΛ + ε(1 + u2)Sh − ωVh − µhVh]

+ λ3[
aβ1ShIv

Nv
(1− u1)− δhEh − µhEh]

+ λ4[δhEh − (µh + α)Ih − γ(1 + u2)Ih]

+ λ5[γ(1 + u2)Ih − ωRh − µhRh]

+ λ6[bvNv −
aβ2SvIh

Nh
(1− u1)−

aβ3SvIp

Np
− µvSv(1 + u3)]

+ λ7[
aβ2SvIh

Nh
(1− u1) +

aβ3SvIp

Np
− δvEv − µvEv(1 + u3)]

+ λ8[δvEv − µvIv(1 + u3)]

+ λ9[bpNp −
aβ4SpIv

Nv
− µpSp]

+ λ10[
aβ4SpIv

Nv
− δpEp − µpEp)]

+ λ11[δpEp − µpIp]

− w11(t)(u1(t)− a1)− w12(t)(b1 − u1(t))− w21(t)(u2(t)− a2)

− w22(t)(b2 − u2(t))− w31(t)(u3(t)− a3)− w32(t)(b3 − u3(t)),

where λ1, λ2, ..., λ11 = λK (forK = sh, vh, ..., ip) are the adjoint variables or co-state variables.

We seek the minimal value of Lagrangian.

Theorem 4.8. Given u∗i , (i = 1, 2, 3) be the set of optimal control, and K∗ be the correspond-

ing set of solutions of the state system that minimizes J over Γ then there exists adjoint variables

λK such that
dλK
dt

= − ∂L
∂K

(adjoint condition), (4.12)
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and

λK(tf ) = 0 (transversality/final time condition). (4.13)

Furthermore
∂L

∂u
= 0 at (u1, u2, u3 = 0) (optimality condition). (4.14)

Proof. We differentiate partially the Lagrangian (Hamiltonian augmented with penalty multi-

plier) with respect to states variables to obtain the adjoint system. Thus, we have;

dλ1

dt
= −

∂L

∂Sh
= λ1

[
aβ1Iv

Nv
(1− u1) + ε(1 + u2) + µh

]
− λ2ε(1 + u2)− λ3

aβ1Iv

Nv
(1− u1),

dλ2

dt
= −

∂L

∂Vh
= λ2(ω + µh)− λ1ω,

dλ3

dt
= −

∂L

∂Eh
= −A1 + λ3(δh + µh)− λ4δh,

dλ4

dt
= −

∂L

∂Ih
= −A2 + (λ6 − λ7)

aβ2Sv

Nh
(1− u1)− λ5γ(1 + u2) + λ4[µh + α+ γ(1 + u2)],

dλ5

dt
= −

∂L

∂Rh
= λ5(µh + ω)− λ1ω,

dλ6

dt
= −

∂L

∂Sv
= (λ6 − λ7)

[
aβ2Ih

Nh
(1− u1) +

aβ3Ip

Np

]
+ λ6µv(1 + u3),

dλ7

dt
= −

∂L

∂Ev
= λ7(δv + µv)− λ8δv ,

dλ8

dt
= −

∂L

∂Iv
= (λ1 − λ3)

aβ1Sh

Nv
(1− u1) + λ8µv(1 + u3) + (λ9 − λ10)

aβ4Sp

Nv
,

dλ9

dt
= −

∂L

∂Sp
= (λ9 − λ10)

aβ4Iv

Nv
+ λ9µp,

dλ10

dt
= −

∂L

∂Ep
= λ10(δp + µp) + λ11δp,

dλ11

dt
= −

∂L

∂ip
= (λ6 − λ7)

aβ3Sv

Np
+ λ11µp.

(4.15)

Now, to obtain the optimal control solution (ui, i = 1, 2, 3), of our Lagrangian we differentiate

partially the Lagrangian L, with respect to u1, u2, u3 and set it to zero as follows:

∂L

∂u1

= 2B1u1 + (λ1 − λ3)
aβ1ShIv
Nv

+ (λ6 − λ7)
aβ2SvIh
Nh

− w11 + w12,

∂L

∂u2

= 2B2u2 + (λ2 − λ1)εSh + (λ5 − λ4)γIh − w21 + w22,

∂L

∂u3

= 2B3u3 − λ6µvSv − λ7µvEv − λ8µvIv − w31 + w32.

(4.16)
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Setting
∂L

∂ui
= 0 for i = 1, 2, 3 and solving for the optimal control, we obtain

u∗1(t) =
1

2B1

[
(λ3 − λ1)

aβ1ShIv
Nv

+ (λ7 − λ6)
aβ2SvIh
Nh

+ w11 − w12

]
,

u∗2(t) =
1

2B2

[(λ1 − λ2)εSh + (λ4 − λ5)γIh + w21 − w22] ,

u∗3(t) =
1

2B3

[λ6µvSv + λ7µvEv + λ8µvIv + w31 − w32] .

(4.17)

To determine an explicit expression for an optimal control without w11, w12, w21,

w22, w31, w32 we use a standard optimality technique involving the bounds of control. The

following are three cases to be considered in each part

Solving for u∗1(t)

• On the set {t|a1 < u∗1 < b1}, we have

w11(u∗1 − a1) = w12(b1 − u∗1) = 0 =⇒ w11 = w12 = 0.

Hence the optimal control is

u∗1(t) =
1

2B1

[
(λ3 − λ1)

aβ1ShIv
Nv

+ (λ7 − λ6)
aβ2SvIh
Nh

]
.

• On the set {t|u∗1 = b1}, we have

w11(u∗1 − a1) = w12(b1 − u∗1) = 0 =⇒ w11 = 0.

Hence the optimal control is

b1 = u∗1(t) =
1

2B1

[
(λ3 − λ1)

aβ1ShIv
Nv

+ (λ7 − λ6)
aβ2SvIh
Nh

− w12

]
.

Since w12(t) > 0, therefore

1

2B1

[
(λ3 − λ1)

aβ1ShIv
Nv

+ (λ7 − λ6)
aβ2SvIh
Nh

]
≥ b1.
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• On the set {t|u∗1 = a1}, we have

w11(u∗1 − a1) = w12(b1 − u∗1) = 0 =⇒ w12 = 0.

Thus, the optimal control is

a1 = u∗1(t) =
1

2B1

[
(λ3 − λ1)

aβ1ShIv
Nv

+ (λ7 − λ6)
aβ2SvIh
Nh

+ w11

]
.

Again since w11(t) > 0, it shows that

a1 ≥
1

2B1

[
(λ3 − λ1)

aβ1ShIv
Nv

+ (λ7 − λ6)
aβ2SvIh
Nh

]
.

We now represent u∗1(t) in compact form as

u∗1(t) = min

{
b1, max

{
a1,

1

2B1

[
(λ3 − λ1)

aβ1ShIv
Nv

+ (λ7 − λ6)
aβ2SvIh
Nh

]}}
. (4.18)

Solving for u∗2(t)

• On the set {t|a2 < u∗2 < b2}, we have

w21(u∗2 − a2) = w22(b2 − u∗2) = 0 =⇒ w21 = w22 = 0.

Hence the optimal control is

u∗2(t) =
1

2B2

[(λ1 − λ2)εSh + (λ4 − λ5)γIh] .

• On the set {t|u∗2 = b2}, we have

w21(u∗2 − a2) = w22(b2 − u∗2) = 0 =⇒ w21 = 0.
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Hence the optimal control is

b2 = u∗2(t) =
1

2B2

[(λ1 − λ2)εSh + (λ4 − λ5)γIh − w22] .

Since w22(t) > 0, therefore

1

2B2

[(λ1 − λ2)εSh + (λ4 − λ5)γIh] ≥ b2.

• On the set {t|u∗2 = a2}, we have

w21(u∗2 − a2) = w22(b2 − u∗2) = 0 =⇒ w22 = 0.

Thus, the optimal control is

a2 = u∗2(t) =
1

2B2

[(λ1 − λ2)εSh + (λ4 − λ5)γIh + w21] .

Again since w21(t) > 0, therefore

a2 ≥
1

2B2

[(λ1 − λ2)εSh + (λ4 − λ5)γIh] .

In compact form, we represent u2(t) as:

u∗2(t) = min

{
b2, max

{
a2,

1

2B2

[(λ1 − λ2)εSh + (λ4 − λ5)γIh]

}}
. (4.19)

Solving for u∗3(t)

• On the set {t|a3 < u∗3 < b3}, we have

w31(u∗3 − a3) = w32(b3 − u∗3) = 0 =⇒ w31 = w32 = 0.
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Hence the optimal control is

u∗3(t) =
1

2B3

[λ6µvSv + λ7µvEv + λ8µvIv].

• On the set {t|u∗3 = b3}, we have

w31(u∗3 − a3) = w32(b3 − u∗3) = 0 =⇒ w31 = 0.

Hence the optimal control is

b3 = u∗3(t) =
1

2B3

[λ6µvSv + λ7µvEv + λ8µvIv − w32].

Since w32(t) > 0, it shows that

1

2B3

[λ6µvSv + λ7µvEv + λ8µvIv] ≥ b3.

• On the set {t|u∗3 = a3}, we have

w31(u∗3 − a3) = w32(b3 − u∗3) = 0 =⇒ w32 = 0.

thus, the optimal control is

a3 = u∗3(t) =
1

2B3

[λ6µvSv + λ7µvEv + λ8µvIv + w31].

Again since w31(t) > 0, we have

a3 ≥
1

2B3

[λ6µvSv + λ7µvEv + λ8µvIv].

Also we represent u∗3(t) in compact form as:

u∗3(t) = min

{
b3, max

{
a3,

1

2B3

[λ6µvSv + λ7µvEv + λ8µvIv]

}}
. (4.20)
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Thus, the optimality system comprise of the state system with adjoint system, the transversality

(final time) and initial conditions as well as optimality conditions.

4.3 Numerical Results and Discussion

In order to obtain the optimal control, we solve the optimality system, consisting of model

equations, adjoint equations and control mechanisms variables by using iterative scheme of

fourth order Runge-Kutta technique.

By using the initial conditions Sh(0) = 3500, Vh(0) = 2500, Eh(0) = 1500, Ih(0) =

1500, Rh(0) = 1000, Sv(0) = 2500, Ev(0) = 1500, Iv(0) = 1500, Sp(0) = 2500, Ep(0) =

1500, Ip(0) = 1500; we begin to solve the state system (model equations) using forward in

time Runge-Kutta method.

The adjoint equations are solved by a backward in time fourth order Runge-Kutta scheme using

the current iterations solutions of the state equation by using terminal conditions λK(tf ) = 0

where tf = 365 days. By referring to Lenhart and Workman (2007), the process is repeated and

iterations stopped if the values of the unknowns at the previous iterations are very very close to

the ones at the present iterations.

As pointed out by other researchers of optimal control in the literature, Mpeshe et al. (2014a),

Okosun and Makinde (2012), Lashari et al. (2012), Makinde and Okosun (2011), computation

of real weights is very involving and needs a lot of information. Thus, we start by initial guess

values of the weights in the objective function as A1 = A2 = 1000; B1 = 0.0001, B2 =

1000 and B3 = 0.01. These weights are theoretically chosen to reveal the control strategies

proposed in this study. We also consider the controls to be bounded in the interval of [0,1].

In simulation we use values of parameters described in Table 4.1 and various combinations of

the three controls at a time to investigate and compare their numerical results. To illustrate
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the effect of different optimal control strategies on the spread of YF in a population, we have

considered the spread of YF in an endemic population and the entire time period T = 365 days.

4.3.1 Using Personal Protection Only

Personal protection u1 is used to optimize the objective function J while we set educational

campaign, u2, and spray of insecticides against vector, u3, to zero. As it is seen in Figure

4.2 (a) & (b), due to personal protection the number of exposed and infectious humans hosts

decreases to zero at time t = 139 days, while population of exposed and infectious human hosts

increases for uncontrolled case.

(a) (b)

Figure 4.2: Using personal protection strategy.

The control profile shows that from t = 0 to t = 139 days there was no change observed with

respect to control strategy may be individuals were thinking on how they can start implement-

ing the strategy, but after using preventive measures (with some cost implemented) like indoor

residual spraying, use of mosquito treated bed nets, mosquito coils and mosquito repellents;

the exposed and infectious individuals reduces rapidly to zero. This means that an effective use

of personal protection can be beneficial to disease control even without the use of educational
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campaign and insecticides. The result is similar with other researchers in the literature. Oko-

sun and Makinde (2013), in their study of optimal control analysis of malaria in the presence

of non-linear incidence rate, compared the effectiveness of two controls; prevention and treat-

ment. Their result showed that prevention is effective to ensure the community is disease free

compared to treatment. Again Okosun et al. (2011) in the study of optimal control analysis

of a malaria disease transmission model that includes treatment and vaccination with waning

immunity, observed that control measures are necessary for disease prevention and control, al-

though for their case using vaccination with waning immunity is not effective than treatment

this is because there is no any vaccine for malaria, for our case we have a vaccine for YF but

not treatment. Moreover, Moulay et al. (2012) in the study of optimal control of chikungun-

ya disease: larvae reduction, treatment and prevention, concluded that effort on prevention is

more important than the effort for treatment, since with this control, epidemics tends to extinc-

tion. Therefore, controls have to focus on prevention that will help populations to prevent the

appearance of another epidemic peak.

4.3.2 Using Educational Campaign Only

With this strategy, we optimize the objective function J using educational campaign, u2, only

while personal protection, u1, and spray of insecticides, u3, is set to zero. Figure 4.3 (a) shows

that educational campaign is implemented with very minimal cost to some individuals that’s

why in (b) although control mechanism is used there is a slight difference in the number of

exposed and infectious human host with and without control, and the exposed and infectious

individuals with controls are not reduced exactly to zero. Thus, this strategy alone is not as

good as the previous one, since we will have the exposed and infected in a years time.

The same result was also obtained by Misra et al. (2013) in their study titled a mathematical

model for control of vector borne diseases through media campaigns. According to them,

creating awareness through media campaigns can serve as a possibility for control of a diseases
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(a) (b)

Figure 4.3: Using educational campaign strategy.

and that due to media campaigns, some people will become acquainted with the tools and

techniques that are essential for prevention of a disease, but if they will not take care against

those possibilities, it will not be beneficial.

4.3.3 Using Spray of Insecticides Only

The use of spray of insecticides against the vector, u3, is used to optimize the objective function

J while we set personal protection, u1, and educational campaign, u2, to zero, we observe in

Figure 4.4 that there is no difference in the number of exposed and infectious individuals with

and without control.

This numerical results indicate that this strategy leaves more infected than it is in the first two

strategies, hence, suggesting that optimal use of spray of insecticides alone is not effective for

disease reduction as some of vectors will remain unaffected and cause the infection to both

hosts.
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(a) (b)

Figure 4.4: Using spray of insecticides strategy.

4.3.4 Using Personal Protection and Educational Campaign

In this strategy, we use two controls personal protection, u1, and educational campaign, u2, to

optimize the objective function J ; while we set spray of insecticides, u3, to zero. We observe in

Figure 4.5 (a) & (b) that due to combination of these two control strategies, there is a significant

difference in the number of exposed and infected with and without control. However, the

control u1 is zero from t = 0 to t = 149 days, while the control u2 is at its upper bound from

t = 0 to t = 190 days before it drops to zero until its final time. The numerical results indicates

that combination of these two strategies is good compared to using single strategy since the

infected reduces to zero from time t = 149 to final time.

With this strategy, the control profiles suggests that control on personal protection, u1, should

be at its upper bound from t = 149 days till the end of the intervention, while educational

campaign, u2, drops gradually from the upper bound to zero after t = 190 days. Hence, sug-

gesting that optimal use of personal protection together with educational campaign is effective

for reduction of disease transmission.

82



(a) (b)

Figure 4.5: Using personal protection and educational campaign strategy.

4.3.5 Using Personal Protection and Spray of Insecticides

Combination of personal protection, u1, and spray of insecticides, u3, is used to optimize the

objective function J , while we set educational campaign, u2 to zero. We observe in Figure

4.6 (a) & (b) that no change has been effected from t = 0 to t = 85 days, meaning that the

number of exposed and infected human were increasing to both cases with and without control.

However, from t = 88 days to t = 312 days the control u3 is implemented with high cost which

results to the decrease of the exposed and infected to zero, while the control u1 is at its upper

bound from t = 88 until the final time before it drops rapidly to zero. The numerical results

indicates that combination of u1 and u3 is most effective compared to combination of u1 and

u2.

This means that an effective and optimal use of personal protection and spray of insecticides

against the vector may be beneficial even without the use of educational campaign, since the

exposed and infected drops rapidly to zero earlier from t = 88 days till the final time.
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(a) (b)

Figure 4.6: Using personal protection and spray of insecticide strategy.

4.3.6 Using Educational Campaign and Spray of Insecticides

With this strategy, the control mechanism educational campaign, u2 and spray of insecticides

on vector, u3, are together used to optimize the objective function J ; while personal protection,

u1, is set to zero. Figure 4.7 (a) shows that the control u3 is at its upper bound throughout the

time before it rapidly fall down to zero at final time, while, the control u2 is zero throughout the

time. This seem spray of insecticides overrides the educational campaign. In (b), the numerical

(a) (b)

Figure 4.7: Using educational campaign and spray of insecticide strategy.
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results indicates that using this strategy the infected and exposed individuals are not reduced

directly to zero although there is a significant difference on using the control and without using

the control. This result suggests that effective and optimal use of educational campaign and

spray of insecticides could not be beneficial to disease transmission reduction without personal

protection.

However, in some cases, when comparing single control versus double control strategies, result

showed that using double control strategy is more beneficial and is effective. The same result

was also shown by other researchers from the literature like Moulay et al. (2012), Lashari et al.

(2012), Okosun et al. (2011) among others. Most of their results showed that two controls

yields better result compared to a single control.

4.3.7 Using Combination of all 3 strategies

Combination of all controls personal protection, u1, educational campaign u2 and spray of

insecticides, u3, is used to optimize the objective function J . We observe in Figure 4.8 (a) &

(b) that the control u1 is at its upper bound from t = 82 days to final time before it fall rapidly to

zero, the control u2 is at its upper bound from t = 0 to t = 124 days before dropping gradually

until the final time, while the control u3 is at its upper bound from t = 80 days to t = 298

days before dropping gradually to zero until the final time. This numerical results indicates

that combination of all strategies u1, u2 and u3 is the most beneficial and effective compared to

combination of two controls or single control, since the infected and exposed reduced to zero

very early at t = 80 until the final time. Also there is a strong significant difference on the

number of infected and exposed with and without control.

This result was also observed by other researchers of optimal control from the literature; like

Mpeshe et al. (2014a) in the study of optimal control strategies for the dynamics of rift valley
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(a) (b)

Figure 4.8: Using combination of strategies.

fever, Ozair et al. (2012) in the study of stability analysis and optimal control of a vector-

borne disease with nonlinear incidence, Moulay et al. (2012) in the study of optimal control

of chikungunya disease; larvae reduction, treatment and prevention, Lashari et al. (2012) in

the study of presentation of malaria epidemics using multiple optimal controls, Makinde and

Okosun (2011) in the study of impact of chemo-therapy on optimal control of malaria disease

with infected immigrants. Their conclusion showed that optimal controls have a very desirable

effect for reducing the number of infected individuals and that multiple optimal controls is the

most effective compared to others.

4.4 Conclusion

In this chapter, we aimed at determining the optimal control measures for preventing and mini-

mizing the YF infection from the population. We derived and analyzed the necessary conditions

for the optimal control model of YF disease in the presence of personal protection and educa-

tional campaign to human hosts as well as spray of insecticides against the vector.

We have identified optimal control strategies for several scenarios. The results show that using

multiple optimal control measures is the most effective strategy to bring a stable disease-free
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situation compared to a single control. However, spray of insecticides alone was seen as not

effective without personal protection, and optimal use of personal protection alone might be

beneficial to minimize transmission of the infection to the community.

Thus control programs that follow three control strategies; personal protection, educational

campaign and spray of insecticides can effectively reduce the number of latent and infectious

individuals and hence disease reduction. However, single control strategy may be considered

depending on objective required.
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CHAPTER FIVE

Cost-Effectiveness Analysis of Personal Protection, Educational Campaign and Spray of

Insecticides for the Dynamics of Yellow Fever4

Abstract: This chapter presents the cost-effectiveness analysis of yellow fever control

programmes for the aim of comparing the costs required against the health benefits gained

among the control programmes. Three strategies (strategy A - personal protection only,

strategy B - personal protection and spray of insecticides and strategy C - personal protec-

tion, educational campaign combined with spray of insecticides) were compared using the

incremental cost-effectiveness ratio technique. The results show that strategy C that combines

all the interventions is the most cost-effective compared to others. We later went further to

investigate the cost-effectiveness ratio of the strategy C per infections avoided and disability

adjusted life years (DALYs) gained over time. Our result show the discounted cost of running

strategy C control programme over time, where the total cost increases with an increase in the

proportion of population who will take personal protection daily and those who will receive

health education for their betterment. Also, we observed that the cost-effectiveness ratio (CER)

per infection avoided and DALYs averted vary for each specific day and decreases with time

since the start of the control programme.

Keywords: Cost-effectiveness analysis; Incremental cost effectiveness ratio; Disability-

adjusted life years (DALYs).

4 This chapter is based on a manuscript submitted to International Journal of Advances in Applied Mathemat-
ics and Mechanics (IJAAMM)
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5.1 Introduction

The study of optimal control theories in epidemiological models have been of much interest for

informed decision-making, because resources devoted to health care are very limited. These

theories, can determine the optimal distribution of limited resources during epidemics (Zhou

et al., 2013). Since the resources in health care are limited, to compare costs required and

benefits gained among programmes (e.g. educational campaign, treatment) cost benefit analysis

and/or cost effectiveness analysis need to be done.

Cost-effectiveness analysis in particular is more useful in comparing broader sets of health

policies or intervention programmes to inform health sector about budget allocation decision.

In health care it involves identification of all relevant use of resources (cost) and evaluation

of expected health benefit (gains) derived by putting those resources to use (Edmunds et al.,

1999). The purpose of cost-effectiveness analysis is to ascertain which programme or combi-

nation of programmes can achieve particular objectives at the lowest cost. By choosing those

with the least cost for a given outcome, society can use its resources more effectively. Cost-

effectiveness analysis measures the effects on mortality (quantity of life) and morbidity (quality

of life) (Rushby and Hanson, 2001). The aim is to maximize the health benefits per dollar spent

(or minimize the cost per unit of health benefit gained) (Edmunds et al., 1999).

In cost-effectiveness analysis, the effects on mortality and morbidity can be carried out using

two methods; the quality-adjusted life years (QALYs) and the disability-adjusted life years

(DALYs). QALYs was the first method to be developed in the 1970’s (Torrance, 1970; Fanshel

and Bush, 1970). In this method, the incremental effect of the control programme is based on

the number of years of life that would be added and reduction of time spent in disability. QALY

weights are assigned the value of one for perfect health and zero for death (Sassi, 2006). We

can refer to (Sassi, 2006) for details on the formulation and calculation of QALYs.
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DALYs is another method of cost-effectiveness analysis which was introduced in the World

Development Report in the 1990’s (WHO, 1996). DALYs are the sum of present value of future

years of lifetime lost through premature mortality, and the present value of years of future time

adjusted to the average severity (frequency and intensity) of any mental or physical disability

caused by a disease or injury (Rushby and Hanson, 2001).

DALYs are a measure of something ‘lost’ rather than ‘gained’. DALYs weight are coded on a

scale of zero for perfect health and one for death which is the opposite of the QALYs. In this

chapter, the cost-effectiveness analysis is done using the ICER and DALYs method, which is

described in Section 5.3.

5.2 Epidemiological Measures

5.2.1 Measuring of Economic Impact of YF

The economic impact of a certain disease is assessed in terms of cost and cost-effectiveness of

different control strategies (Hove-Musekwa et al., 2014). This involves cost measures for each

strategy and the different economic evaluation methods. In our yellow fever model, personal

protection was seen as the best strategy for single control, personal protection and spray of

insecticide was the best for two controls and combination of all three strategies that is personal

protection, educational campaign and spray of insecticides (PEI) was also seen as the best

control strategy to bring a stable disease free situation for a set of three controls. Thus in our

cost effectiveness analysis, we need to investigate and compare differences between the costs

of these interventions per health outcome achieved.
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5.2.2 Cost Measurement

In measuring costs, we identify the resources to be used, quantify them and place a monetary

value on them (Hove-Musekwa et al., 2014). We calculate and compare the costs of control

strategy per health outcome achieved to meet social demand. We aim at maximization of total

population health. These costs include direct, indirect and intangible (pain of suffering). In-

direct costs includes costs of resource inputs and existing infrastructure, while direct costs are

like staff salaries and per-diem, supplies (consumable used for insecticide spraying and vec-

tor surveillance) and mobility (fuel and minor vehicle fixes during fieldwork). Morbidity and

mortality costs are included in the calculation of cost-effectiveness ratio.

5.2.3 Cost-effectiveness ratio (CER)

There are three types of cost-effectiveness ratio: average cost-effectiveness ratio (ACER),

marginal cost-effectiveness ratio (MCER) and the incremental cost-effectiveness ratio (ICER).

The most commonly used are the average cost effectiveness ratio (ACER) and the incremental

cost-effectiveness ratio (ICER). We use CER to analyse the effectiveness of control measures,

and we define it mathematically as:

CER =
Total cost of an intervention

Effectiveness of the intervention
, (5.1)

5.3 Cost-effectiveness analysis

To quantify the cost-effectiveness of the control measures, we examine the cost-effectiveness

ratio of the strategies, so that we can draw our conclusions. The cost-effectiveness ratio is the

ratio of the net costs to the net benefits (Edmunds et al., 1999). The three types mentioned in

Sub-section 5.2.3 are discussed shortly as follows: The ACER deals with a single intervention
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and evaluates that intervention against its baseline option (e.g., no intervention or current prac-

tice). It is calculated by dividing the net cost of the intervention by the total number of health

outcomes prevented by the intervention.

The marginal cost-effectiveness ratio (MCER) is used for assessment of specific changes in cost

and effect when a program is expanded or contracted, and the incremental cost-effectiveness

ratio (ICER), is used to compare the differences between the costs and the health outcomes

of two or more alternative intervention strategies that compete for the same resources. It is

generally described as the additional cost per additional health outcome.

5.3.1 Incremental Cost-Effectiveness Ratio

In this study our interest lies foremost in the incremental cost-effectiveness ratio (ICER) which

is the ratio of the incremental cost to the incremental benefit of two or more competing in-

terventions. The ICER allows us to compare the cost-effectiveness of our interventions, that

is, personal protection, personal protection and spray of insecticides, and combination of al-

l strategies: personal protection, educational campaigns combined with spray of insecticides.

The ICER represents the gradient of the line connecting the program outcome to the existing

strategy on the cost-effectiveness graph. The program which has the lowest gradient or with

flatter slope is the most cost-effective (Hove-Musekwa et al., 2014). That is to say a high value

of ICER corresponds to a small increase in health benefit over the strategy above it, but with a

relatively large additional cost (Adams et al., 2007).

In ICER, when comparing two competing intervention strategies incrementally, one interven-

tion should be compared with the next-less-effective alternative. The ICER numerator includes

the differences in intervention costs, averted disease costs, costs of prevented cases, and averted

productivity losses if applicable, while ICERs denominator is the difference in health outcomes
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(e.g., total number of infections averted, number of susceptibility cases prevented) (Okosun and

Makinde, 2012; Okosun et al., 2011).

We therefore take our strategies to be strategy A (personal protection only), strategy B (personal

protection and spray of insecticides) and strategy C (personal protection, educational campaign

combined with spray of insecticides) and the baseline option of no strategy (no control). Thus,

based on the model simulation results of the paper titled Application of optimal control strate-

gies for the dynamics of YF by Kung’aro et al. (2015) [Chapter 4] we rank the strategies in

order of increasing effectiveness as in Table 5.1.

Table 5.1: Strategies with costs from Chapter 4 simulation

Strategies Total infection averted Total costs ($) ICER
No Strategy 0 0 -
Strategy A 0.0202 $ 4928 243960.396
Strategy B 2.9965 $ 9014 1372.845
Strategy C 1.2953×105 $ 2589400 19.922

The ICER, is then calculated as:

ICER (A) =
4928

0.0202
= 243960.396,

ICER (B) =
9014− 4928

2.9965− 0.0202
=

4086

2.9763
= 1372.845,

Comparing between strategy A and B, it shows a cost saving of $ 1372.85 for strategy B over

strategy A. The higher ICER in strategy A indicates that strategy A is strongly dominated, that

is, strategy A is more costly and less effective than strategy B. Therefore, strategy A is excluded

from the set of alternatives since it does not consume limited resources.

Thus, we now need to compare strategy B and C; we calculate the ICER for strategy C as

follows:

ICER (C) =
2589400− 9014

129530− 2.9965
=

2580386

129527.0035
= 19.922,
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Based on this result, we conclude that strategy C (combination of all strategies) has the least

ICER and therefore is more cost-effective than strategy B. Thus, it is clear that the efforts

on personal protection, educational campaign and spray of insecticides is more desirable for

effective control of YF.

The results are similar with Okosun and Makinde (2012) on their study titled on a drug-resistant

malaria model with susceptible individuals without access to basic amenities. In this study they

used ICER to compare the cost-effectiveness of the combination of at least two of the control

strategies, use of treated bednets, treatment of infective individuals, and spray of insecticides.

Strategy A was combination of provision of basic amenities and use of treated bednets; strat-

egy B was combination of provision of basic amenities and treatment of infective individuals;

strategy C was combination of use of treated bednets and treatment of infective individuals

and strategy D was combination of provision of basic amenities, use of treated bednets and

treatment of infective individuals. Their results showed that strategy D (combination of use of

treated bednets, provision of basic amenities to susceptibles, and treatment of infectives) has

the least ICER and therefore is more cost-effective than others.

Similarly, Hove-Musekwa et al. (2014) got the same results in the study of cost-effectiveness

analysis of hospitalization and home-based care strategies for people living with HIV/AIDS: the

case of Zimbabwe. Their control strategies compared were voluntary counselling and testing

(VCT), VCT combined with hospitalisation, VCT combined with community home based care

(CHBC), and a combination of the three strategies. The results showed that a combination of

all the intervention strategies gives the best result.

We then analyse the cost and the cost-effectiveness of implementing PEI control programme

(our optimal strategy). We investigate the cost-effectiveness of personal protection, education-

al campaign and spray of insecticides on human population by looking at human infections

avoided or DALYs (disability adjusted life years) averted over time.
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We assume that costs of personal protection and educational campaign are directed to all hu-

man population groups (i.e susceptible, vaccinated, exposed, infected and recovered), while

spray of insecticide (which include larvicide and adulticide) costs will be directed to buying of

the spraying medicine and paying the workers who engage on spraying activities for the aim

of reducing vector population. Since costs fluctuate with time, in economic analysis there is

discounting of the costs for the particular period and this discount rate is usually between 3%

and 5% (Hove-Musekwa et al., 2014).

Let C(t) be the total cost rate function (in US $ per unit time), a proportion η from total

human population are assumed to take personal protection daily making the cost of personal

protection, CP , to be associated with buying and using mosquito coils and repellents, mosquito

treated bed-nets and indoor residual spraying. We also assume that educational campaign is

done once a month and the cost of educational campaign, CE , is proportional to the total num-

ber of human population at any given time and is associated to training peer educators and

health workers, printing booklets and other related materials, cost of information from the ra-

dio, newspapers and televisions as well as paying salaries and per-diem during implementation

of the programme.

Finally, we assume CI to be the cost of buying medicine for spraying and paying workers who

engage in spraying activities (which include larvicide and adulticide) for reducing vector popu-

lation. Spraying activities is assumed to be done twice in every month because the mosquitoes

that are not affected by the initial spray (i.e do not die) may reproduce and increase their popu-

lation within two weeks period. Therefore the total cost function at any time t, is given by:

C(t) = ηCPNh + νCENh + CI , (5.2)

where η is the proportion of human population taking personal protection daily, and ν is the

rate of human population receiving health education either from the radio, televisions, news
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papers or from the trained health workers daily. The total discounted economic costs CTC ,

direct cost of personal protection, education campaign and spraying as per control programme

over T years period is given by:

CTC =

∫ T

0

C(t)e−rtdt, (5.3)

where r is the discount rate, Nh = Sh + Vh + Eh + Ih +Rh.

We then use the CER (5.1) to analyse the effectiveness of our PEI control programme. We

investigate the effectiveness, and then the cost-effectiveness of personal protection, educational

campaign and the spray of insecticides on human population by looking at human infection-

s avoided or DALYs (disability adjusted life years) averted over time. PEI programmes are

typically implemented over a long period of time, hence the costs and the benefits have to be

summed over time and discounted to their present value (as costs and benefits which occur in

the future are valued lower than costs and benefits that occur now).

5.3.2 CER per infections avoided

Let χ∗ (assumed to be constant) be the initial incidence at the start of the control programme,

which is assumed to start at endemic equilibrium point in absence of any control programme.

The cost-effectiveness ratio per infection avoided in human is given by:

CER =

∫ T
0
C(t)e−rtdt∫ T

0
[χ∗ − χ(t)]e−rtdt

, (5.4)

where C(t) is the net cost of the PEI programme, χ(t) is the incidence of human infection at

time T and r is the discount rate (Edmunds et al., 1999).
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5.3.3 DALYs averted over time

DALYs combines the measure of time lived with disability and the time lost due to premature

death. That is the sum of years of life lost(YLLs) due to premature death and years of life lived

with disability (YLDs). Thus;

DALYs = YLLs + YLDs. (5.5)

We use the idea of other researchers from the literature Rushby and Hanson (2001) and Murray

(1994) to calculate the values of YLLs and YLDs for a single death by using the following

formulae

YLLs =
KCera1

(r + b)2

(
e−(r+b)(L1+a1)[−(r + b)(L1 + a1)− 1]− e−(r+b)a1 [−(r + b)a1 − 1]

)
+

1−K
r

(1− e−rL1), (5.6)

and

YLDs = DW
KCera2

(r + b)2

(
e−(r+b)(L2+a2)[−(r + b)(L2 + a2)− 1]− e−(r+b)a2 [−(r + b)a2

)
− 1] +DW

1−K
r

(1− e−rL2), (5.7)

whereK is the age-weighting modulation constant, r is the discount rate, b is the age weighting

constant, C is the adjustment constant for age-weights, a1 is the age at the onset of the disease,

L1 is the duration of disability, a2 is the age at death, L2 is the standard life expectancy at

age of death (years) and DW is the disability weight (DW=1 for premature death, DW=0 for

perfect heath) (Rushby and Hanson, 2001). We also assume that all human individuals will live

up to their life expectancy, we therefore calculate DALYs averted through our optimal control
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measure (PEI) from the following equation,

DALYsAverted = Y LLs

∫ T

0

[φ∗ − φ(t)]e−rtdt+ Y LDs

∫ T

0

[χ∗ − χ(t)]e−rtdt, (5.8)

where φ∗ and φ(t) are the estimated number of humans dying due to the disease per day at

the beginning of the intervention and at time T respectively. The LHS of eqn (5.8) gives the

DALYs averted due to death and infections avoided, respectively. Since there is no treatment

of infectious cases, DALYs are taken to be averted through human infection and death avoided.

Thus, the cost effectiveness ratio per DALYs averted is given by;

CER =

∫ T
0
C(t)e−rtdt

DALYsaverted
. (5.9)

5.4 Numerical results and discussion

In this section we illustrate the numerical results of the cost-effectiveness analysis of personal

protection, educational campaign and spray of insecticides (PEI) control program by carrying

out numerical simulations of the model equations (5.3), (5.4) and (5.9). We assume that there

is no other optimal strategy apart from the PEI programme.

We also assumed that application of insecticide spray will increase mortality rate of vectors,

which automatically results in reduction of its birth rate, and that application of PEI control

effort is started at the endemic situation where we have the disease in the model and in the

absence of any other intervention. Most of the parameter values that we use in simulation

of the model are from literature search, Tanzania Health Profile (2012), Tanzania Population

Census (2012), WHO (2014) and few are assumed. Parameters as they have been used in this

study are described in Chapter 4 Table 4.1.

United Republic of Tanzania with a population size of about 44.9 million people (Tanzania Pop-

ulation Census, 2012), and taking the initial cost of implementing the control programme per
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day to be $0.5×103 for personal protection, $0.6×103 for educational campaign and $0.7×103

for spraying of insecticides, requires the estimated daily costs for running the PEI programme

given in Figure 5.1.

(a) (b)

Figure 5.1: Cost of implementing PEI programme for different values of η and ν.

Results show the cost with discount of running the PEI control programme over time, where

the total cost increases with an increase in the proportion of population who take personal

protection daily and those who will receive health education respectively. Cost-effectiveness

analysis parameters are as shown in Table 5.2.

Table 5.2: Description of cost-effectiveness analysis parameters of the model equation (5.8)

Symbol Description Value Reference
DW Disability weight 0.45 assume
r Discount rate 0.03 Hove-Musekwa et al. (2014)
K Age-weighting modulation constant 1 Murray (1994),
C Adjustment constant for age-weights 0.16243 Murray (1994),
b Age weighting constant 0.04 Murray (1994),
L1 Duration of disability 100 days assume
a1 Age at the onset of the disease

(mid-value of life expectancy) 30.42 years Tanzania Health Profile (2012),
WHO (2014)

a2 Age at death 34 years assume
L2 Standard life expectancy at age of death 32 years assume

Figures 5.2 (a) and (b) show the cost-effectiveness ratio per infection avoided of the personal

protection, educational campaign and the spray of insecticides (PEI) control programme over

time by varying η (a proportion of total human population taking care for themselves daily) and
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(a) (b)

Figure 5.2: Cost-effectiveness ratio per infection avoided by varying η, and ν for (a) and (b)
respectively.

ν (a proportion of total human population receiving health education daily) respectively. The

result show that the CER per infection avoided vary for each specific day and decreases with

time since the start of the control programme and drops to a value of $0.3048 and $0.4785 by

varying η and ν respectively.

We also see in Figures 5.3 (a) and (b) that the CER per DALYaverted over time decreases daily

to a value of about $5.094 × 10−2 by varying η and $0.3048 by varying ν, since the start of

the control programme. Again, it should be noted that all the cost-effectiveness ratios seems to

decrease as you increase the proportion of individuals who take personal protection daily, and

those who acquire health education and use the knowledge to account for their life if the control

programme is run for many years.

However, our results do not include the benefits that would be arising from avoided infections

(cost benefit analysis is not done). If these benefits are included, then we would expect the

cost-effectiveness ratio to be far less than the ones estimated in all Figures 5.1, 5.2 and 5.3

above.
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(a) (b)

Figure 5.3: Cost-effectiveness ratio per DALYaverted by varying η, and ν for (a) and (b) re-
spectively.

5.5 Conclusion

This chapter aimed at finding out the cost-effectiveness of the control measures introduced in

our yellow fever model. We first examined the cost-effectiveness ratio of the strategies by using

the incremental cost-effectiveness ratio (ICER), which is used to compare the costs against the

health benefits of two or more competing interventions.

Our interventions were categorized into four groups where we had baseline option; no interven-

tion strategy (no control), strategy A (personal protection only), strategy B (personal protection

and spray of insecticides) and strategy C (personal protection, educational campaign combined

with spray of insecticides).

Our results indicate that strategy C, that combines all the interventions is the most cost-effective

compared to others and hence, if implemented disease infection will be minimized. However,

as pointed out by Hove-Musekwa et al. (2014) decisions to implement a particular strategy are

not only dependent on cost-effectiveness criteria but also dependent on other factors such as,

what the policy maker is willing to pay and considers to be for money.
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We later used the CER per infections avoided and DALYs averted over time technique to in-

vestigate the cost-effectiveness of the PEI intervention obtained above. Result show the dis-

counted cost of running PEI control programme over time, where the total cost increases with

an increase in the proportion of population that take personal protection daily, and those who

receive health education for their betterment. Again, the results show that the CER per infection

avoided and DALYs averted vary for each specific day and decreases with time since the start

of the control programme.

Cost-effectiveness analysis presented in this study can help to inform decision makers which

control strategies they can implement. As pointed out by Klein et al. (2007) in the study of

mathematical models of disease environment, that interdisciplinary collaborations can help in

improving the accuracy of predictions of the course and cost of the epidemic and help policy

makers in implementing the correct strategies.
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CHAPTER SIX

General Discussion, Conclusion and Recommendations

6.1 Summary

In this study, a non-linear mathematical model (system of ODEs) with two hosts and one vec-

tor has been formulated, presented and analysed to study transmission dynamics of YF. The

model was later extended to include control variables which were personal protection, educa-

tional campaign and spray of insecticides aiming to assess the optimal and affordable control

measures for prevention and control of YF infection in Tanzania. The main objective of the

study was to formulate and analyse mathematical models that are used to study transmission

dynamics and find affordable control strategies of YF disease. For the model to be biologically

relevant, several assumptions were made concerning behaviour of the populations, and several

parameters and variables were identified for model development.

Both qualitative and numerical analyses of the model were done. Qualitative analysis of the

model, involved computation of the threshold parameter R0, which was done using the next

generation operator approach as well as determining the existence and stability of the model

equilibria. Sensitivity analysis of the threshold parameter R0, with respect to epidemiological

parameters was carried out in order to assess some key parameters for disease transmission.

Finally, different control strategies were evaluated to assess their effectiveness to control YF

transmission dynamics using optimal control theory and Pontryagins Maximum Principle. Fur-

thermore, cost-effectiveness analysis of optimal control measures was carried out aiming at

comparing the costs required against the health benefits gained among the optimal control pro-

grammes, given that the economy of most developing countries including Tanzania is low.
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6.2 Conclusion

From the study, it is noted that the transmission dynamics of YF infection is caused mostly with

daily biting rate of infected mosquitoes, probability of disease transmission from infected vector

to susceptible human and vice versa, birth rate of vectors, and the recruitment of unvaccinated

immigrants to susceptible human populations. Most of these sensitive parameters to R0 are

preventable through control mechanisms. Thus, one effective way that can possibly reduce

transmission and prevalence of the disease is quick and focused interventions, destruction of

breeding sites and YF surveillance at the ports of entry.

Also from the analysis, threshold parameter of the form R0 =
√
Rhv +Rvm was obtained

where Rhv represents the reproduction number of human-vector compartment and Rvm repre-

sents the reproduction number of primate-vector compartment. Disease-free equilibrium point

was seen to be locally asymptotically stable if Rvm < 1 and globally asymptotically stable if

Rhv < 1, meaning that YF epidemic can be prevented and controlled from human individuals

if new infection from monkeys to vector is less than unity and also new infection from vector

to human is less than unity. Thus, prevention of new infection from monkeys is essential since

they are primary hosts and the sources of YFV as also noted from other researchers in the lit-

erature. Generally, disease-free equilibrium point is stable locally and globally if and only if

R0 < 1. This result calls for much attention to vectors since they are intermediary between

human host and primate in the transmission of the disease.

Furthermore, we derived and analysed the conditions for optimal control of YF with personal

protection, educational campaign and spray of insecticides using optimal control theory for

different scenarios. Results show that using multiple optimal control measures (for this case

combination of the strategies) is most effective strategy to bring a stable disease-free situation

compared to a single control. However, spray of insecticides alone was seen as not effective
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without personal protection, and optimal use of personal protection alone might be beneficial

to minimize transmission of the infection to the community.

In addition to that, cost-effectiveness analysis of the optimal control measures was carried out

to compare costs incurred with health outcome achieved between two or more alternative in-

tervention strategies that compete for the same resources, using incremental cost-effectiveness

ratio. Results showed that combination of all strategies is the most cost-effective compared to

others and hence efforts on personal protection, educational campaign and spray of insecticides

is more desirable for effective control of YF.

Finally, we investigated the cost-effectiveness ratio of PEI (the best strategy obtained) per in-

fections avoided and disability adjusted life years (DALYs) gained over time. From numerical

results, we see that the total cost increases with an increase in the proportion of population that

take personal protection daily and those who receive health education. Also, results show that

the CER per infection avoided and DALYs averted vary for each specific day and decreases

with time since the start of the control programme.

6.3 Recommendations

Based on the findings of the study, we make the following recommendations:

1. Emphasize on vaccination to prevent YF transmission by introducing a governmen-

t health vaccination policy to be compulsory not only to travelers but also to all citizens

with the affordable cost. Since no cure is available currently, and complete eradication

is not possible therefore vaccination remain as a single most important measure for pre-

venting YF.

2. Increase and conduct massive awareness programmes to people through information

campaign, educational seminars, and use of mass media programme about YF epidemic,
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its transmission factors and how to protect oneself from being exposed to infection and

other possible transmission factors from environment.

3. Vectors being the most risk factors for YFV transmissions, Government should plan,

establish and implement fumigation policy specifically those places where most vector

breeding occurs (tropical regions), so as to destroy the sites and reduce vector population.

Advice on emptying stagnant water areas where vectors are most likely to live.

4. Increase collaborations with private sectors and non-governmental international organisa-

tions (NGOs) and involve them in identifying and supporting appropriate and sustainable

disease control measures and surveillance system for early detection of YF cases.

6.4 Limitations and Future Work

The research results and conclusions obtained in this study are not final findings, the work can

be extended in various ways to provide further insights and assess the impact of current and

future control strategies to YF by:

1. Considering climate change like temperature variations effect on disease transmission.

The impact of climate change on birth rate and development rates of vectors have not

been considered. However, biting rate, carrying capacity, birth rate, death rate, incubation

rate and other physiognomies of mosquitoes depend on climate factors, thus these factors

might make the model more realistic.

2. Introducing time delay in population dynamics: when the rate of change of population

is not only a function of the present population but also depends on the past population,

also delay can arise from latent period of the disease. Thus employing delay differential

equations in YF modelling would lead to some interesting behaviour.
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3. Future direction may also consider modelling YF and other vector-borne infectious dis-

eases without homogeneous mixing assumption. As it is really known that risks from an

infection may be age related, vaccination programmes may focus on specific ages and

age groups mix heterogeneously. Considering epidemiological models with age structure

would lead to system of partial differential equations, the area that is in its infancy stage.

4. Including vertical transmission of the infection to the vector population, isolation as

a control strategy specifically when resources are not sufficient and carrying out cost-

benefit analysis of optimal control measures.

5. Re-examining the assumptions set and trying to relax some as well as validating the

model using parameter values estimated from the real data of a specific endemic country

of YF. For our case, inadequate real data from the country forced us to resort to literature

and assume for the unavailable one.
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Appendix A

Matlab codes for Figures of Chapter Two

% Defining the functions for the normalised model to be

saved as ’monie.m’(first time), ’monie1.m’(second time)

and ’monie2.m’(last time). Their corresponding equations

are as follows:

function dy = monie(t,y)

function dy = monie1(t,y)

function dy = monie2(t,y)

%defining the variables

s_h = y(1); s_v = y(6); s_m = y(9);

v_h = y(2); e_v = y(7); e_m = y(10);

e_h = y(3); i_v = y(8); i_m = y(11);

i_h = y(4);

r_h = y(5);

% Defining parameter values

bh = 0.003; bv = 0.05; bm = 0.04; sigma = 0.009;

rho = 0.02; omega = 0.05; a =0.9; beta1 = 0.9;

beta2 = 0.9; beta3 = 0.5; beta4 = 0.9;

varepsilon = 0.005; alpha = 0.001; deltah = 0.05;

deltav = 0.02; deltam = 0.85; gamma = 0.05;

% writing the model equations

dy(1) = bh+rho*(1-sigma)+omega*(v_h+r_h)-...

a*beta1*s_h*i_v-s_h*(varepsilon+bh+sigma)+...

alpha*s_h*i_h;
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dy(2) = rho*sigma+varepsilon*s_h-v_h*(omega+bh+sigma)

...+alpha*e_h*i_h;

dy(3) = a*beta1*s_h*i_v-e_h*(deltah+bh+sigma)+...

alpha*e_h*i_h;

dy(4) = deltah*e_h-i_h*(gamma+alpha+bh+sigma)+...

alpha*i_h*i_h;

dy(5) = gamma*i_h-r_h*(omega+bh+sigma)+alpha*r_h*i_h;

dy(6) = bv-(a*beta2*s_v*i_h+a*beta3*s_v*i_m)-s_v*bv;

dy(7) = a*beta2*s_v*i_h+a*beta3*s_v*i_m-e_v*(deltav+bv);

dy(8) = deltav*e_v-i_v*bv;

dy(9) = bm-a*beta4*s_m*i_v-s_m*bm;

dy(10) = a*beta4*s_m*i_v-e_m*(deltam+bm);

dy(11) = deltam*e_m-i_m*bm;

dy = [dy(1);dy(2);dy(3);dy(4);dy(5);dy(6);dy(7);

dy(8);dy(9);dy(10);dy(11)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RUNNING FILE;

clear all

close all

clc

tspan=[0 350];

% Defining initial values for variables

y0 = [0.25 0.25 0.15 0.15 0.2 0.4 0.2

0.4 0.4 0.2 0.4];

% Define equations to be integrated

opt=odeset(’RelTol’,1e-00006); % creates an integrator
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[t1 y1] = ode45(@monie,tspan,y0,opt);

[t2 y2] = ode45(@monie1,tspan,y0,opt);

[t3 y3] = ode45(@Monie2,tspan,y0,opt);

% Defining total human population equation

Nh=y1(1,1)+y1(1,2)+y1(1,3)+

y1(1,4)+y1(1,5);

% Defining prevalence of the disease function

from human equation

Prevalence = (y1(:,3)+y1(:,4))./Nh

Prevalence = (y2(:,3)+y2(:,4))./Nh

Prevalence = (y3(:,3)+y3(:,4))./Nh

% plotting

plot(t1,(y1(:,3)+y1(:,4))/Nh,’b-’,t2,(y2(:,3)+...

y2(:,4))/Nh,’r-’,t3,(y3(:,3)+y3(:,4))/Nh,

’g-’,’Linewidth’,3);

xlabel(’Time (days)’,’Fontsize’,14)

ylabel(’Disease Prevalence’,’Fontsize’,14)

legend(’a=0.9’,’a=0.5’,’a=0.2’)

hold on

% Note1: The parameter value for ’a’ should be

different in each function that is; in monie

’a=0.9’, monie1 ’a=0.5’, and monie2 ’a=0.3’

% Note2: The same codes and procedure is used for

variation of values of beta1, bv, bh,
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deltav and deltah parameters.

MATLAB Codes for Figure 2.5

%Defining the functions for the normalized

model to be saved as ’infree.m’

function dy =infree(t,y,bh,bm,bv,sigma,rho,

omega,a,beta1,beta2,beta3,beta4,varepsilon,

alpha,delta_h,delta_v,gamma,delta_m)

%defining the variables of the model

s_h = y(1); s_v = y(6); s_m = y(9);

v_h = y(2); e_v = y(7); e_m = y(10);

e_h = y(3); i_v = y(8); i_m = y(11);

i_h = y(4);

r_h = y(5);

%writing the model equations

dy(1) = bh+rho*(1-sigma)+omega*(v_h+r_h)-...

a*beta1*s_h*i_v-s_h*(varepsilon+bh+sigma)+...

alpha*s_h*i_h;

dy(2) = rho*sigma+varepsilon*s_h-v_h*(omega+bh+sigma)+

...alpha*e_h*i_h;

dy(3) = a*beta1*s_h*i_v-e_h*(delta_h+bh+sigma)+...

alpha*e_h*i_h;

dy(4) = delta_h*e_h-i_h*(gamma+alpha+bh+sigma)+...

alpha*i_h*i_h;

dy(5) = gamma*i_h-r_h*(omega+bh+sigma)+...

alpha*r_h*i_h;
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dy(6) = bv-(a*beta2*s_v*i_h+a*beta3*s_v*i_m)-...

s_v*bv;

dy(7) = a*beta2*s_v*i_h+a*beta3*s_v*i_m-...

e_v*(delta_v+bv);

dy(8) = delta_v*e_v-i_v*bv;

dy(9) = bm-a*beta4*s_m*i_v-s_m*bm;

dy(10) = a*beta4*s_m*i_v-e_m*(delta_m+bm);

dy(11) = delta_m*e_m-i_m*bm;

dy = [dy(1);dy(2);dy(3);dy(4);dy(5);dy(6);dy(7);

dy(8);dy(9);dy(10);dy(11)];

%Displaying the reproduction number value

R0 = sqrt((aˆ2*beta1*beta2*delta_h*delta_v*...

(bh+sigma(1-rho)+omega))./((delta_h+bh+sigma)*...

(gamma+alfa+bh+sigma)*bv*(delta_v+bv)*...

(gamma+alfa+bh+sigma)*(delta_h+bh+sigma)))+...

((aˆ2*beta3*beta4*delta_v*delta_m)./bm*...

(delta_m+bm)*bv*(delta_v+bv))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%RUNNING FILE

clear all

close all

clc

tspan=0:0.01:8;

%Defining initial values of the variables

and parameters

y0 = [0.35 0.15 0.2 0.2 0.1 0.35 0.3 0.35
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0.35 0.3 0.35];

bh = 0.53; rho = 0.02; alpha = 1.5;

bv =0.5; a = 0.5; beta4 = 0.5;

bm = 0.4; beta1 = 0.5; delta_h = 0.05;

omega = 0.05; beta2 = 0.3; delta_v = 0.8;

sigma = 0.0009; beta3 = 0.37; delta_m = 0.05;

varepsilon = 0.5; gamma = 0.007;

opt=odeset(’RelTol’,1e-00006); %creates an integrator

[t y] = ode45(@infree,tspan,y0,opt,bh,bm,bv,sigma,rho,

omega,a,beta1,beta2,beta3,beta4,varepsilon,alpha,

delta_h,delta_v,gamma,delta_m);

%Plotting

figure,plot(t,y(:,1),’b’,’linewidth’,3);

hold on

plot (t,y(:,6),’r’,’linewidth’,3);

plot (t,y(:,9),’g’,’linewidth’,3);

xlabel(’Time (years)’,’Fontsize’,14)

ylabel(’Proportions of susceptibles’,’Fontsize’,14)

legend(’human’,’vector’,’primates’)

hold on

figure,plot(t,y(:,4),’b’,’linewidth’,3);

hold on

plot(t,y(:,8),’r’,’linewidth’,3);

plot(t,y(:,11),’g’,’linewidth’,3);

xlabel(’Time (years)’,’Fontsize’,14)

ylabel(’Proportions of infectious’,’Fontsize’,14)
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legend(’human’,’vector’,’primates’)

hold on

MATLAB Codes for Figure 2.6

%Defining the functions for normalized model to be

saved as ’ende.m’

function dy = ende(t,y,bh,bm,bv,sigma,rho,omega,a,

beta1,beta2,beta3,beta4,varepsilon,alpha,muh,muv,

mup,deltah,deltav,gamma,deltam)

%Defining the variables

s_h = y(1); s_v = y(6); s_m = y(9);

v_h = y(2); e_v = y(7); e_m = y(10);

e_h = y(3); i_v = y(8); i_m = y(11);

i_h = y(4);

r_h = y(5);

%Writing the model equations

dy(1) = bh+rho*(1-sigma)+omega*(v_h+r_h)-...

a*beta1*s_h*i_v-s_h*(varepsilon+bh+sigma)

...+alpha*s_h*i_h;

dy(2) = rho*sigma+varepsilon*s_h-v_h*(omega+bh+sigma)

...+alpha*e_h*i_h;

dy(3) = a*beta1*s_h*i_v-e_h*(deltah+bh+sigma)+...

alpha*e_h*i_h;

dy(4) = deltah*e_h-i_h*(gamma+alpha+bh+sigma)+...

alpha*i_h*i_h;

dy(5) = gamma*i_h-r_h*(omega+bh+sigma)+alpha*r_h*i_h;

dy(6) = bv-(a*beta2*s_v*i_h+a*beta3*s_v*i_m)-s_v*bv;
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dy(7) = a*beta2*s_v*i_h+a*beta3*s_v*i_m-e_v*(deltav+bv);

dy(8) = deltav*e_v-i_v*bv;

dy(9) = bm-a*beta4*s_m*i_v-s_m*bm;

dy(10) = a*beta4*s_m*i_v-e_m*(deltam+bm);

dy(11) = deltam*e_m-i_m*bm;

dy = [dy(1);dy(2);dy(3);dy(4);dy(5);dy(6);dy(7);

dy(8);dy(9);dy(10);dy(11)];

%Displaying the reproduction number value

R0 = sqrt((aˆ2*beta1*beta2*delta_h*delta_v*...

(bh+sigma(1-rho)+omega))./((delta_h+bh+sigma)*...

(gamma+alfa+bh+sigma)*bv*(delta_v+bv)*...

(gamma+alfa+bh+sigma)*(delta_h+bh+sigma)))+...

((aˆ2*beta3*beta4*delta_v*delta_m)./bm*...

(delta_m+bm)*bv*(delta_v+bv))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%RUNNING FILE

clear all

close all

clc

tspan=[0 250];

%Defining initial values for variables

y0 = [0.4 0.2 0.15 0.15 0.1 0.4 0.3

0.3 0.4 0.3 0.3];

%Defining parameter values at endemic zone

bh = 0.003; bv = 0.05; bm = 0.04;
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sigma = 0.009; rho = 0.02; omega = 0.05;

a = 0.9; beta1 = 0.9; beta2 = 0.9;

beta3 = 0.5; beta4 = 0.9; varepsilon = 0.005;

alpha = 0.001; deltah = 0.05; deltav = 0.02;

deltam = 0.85; gamma = 0.05;

opt=odeset(’RelTol’,1e-00006); %creates an integrator

[t y] = ode45(@ende,tspan,y0,opt,bh,bp,bv,

Lambda,rho,omega,a,beta1,beta2,beta3,beta4,

varepsilon,alpha,deltah,deltav,gamma,deltam);

%Plotting

figure,

plot(t,y(:,1),’-b’,t,y(:,6),’-r’,t,y(:,9),

’-g’, ’LineWidth’,3);

legend(’human’,’vector’,’primate’,2)

xlabel(’Time (days)’,’Fontsize’,14)

ylabel(’Susceptible Populations’,’Fontsize’,14)

hold on

figure,

plot(t,y(:,4),’--b’,t,y(:,8),’--r’, t,y(:,11),

’g--’,’LineWidth’,3);

legend(’human’,’vector’,’primate’,2)

xlabel(’Time (days)’,’Fontsize’,14)

ylabel(’Infectious Populations’,’Fontsize’,14)

127



Appendix B

Matlab codes for Figures of Chapter Four

% Defining function that solves the state system with

eleven differential equations by Monie, 2014

function ydot = jims(t,yy,U,Constant)

% Definitions of Variables

%Human population %Vector population %Primate population

Sh = yy(1); Sv = yy(6); Sp = yy(9);

Vh = yy(2); Ev = yy(7); Ep = yy(10);

Eh = yy(3); Iv = yy(8); Ip = yy(11);

Ih = yy(4);

Rh = yy(5);

% Defining parameters used

bh = Constant(1); beta4 = Constant(11);

bv = Constant(2); epsilon = Constant(12);

bp = Constant(3); alpha = Constant(13);

Lambda = Constant(4); deltah = Constant(14);

rho = Constant(5); deltav = Constant(15);

omega = Constant(6); deltap = Constant(16);

a = Constant(7); gamma = Constant(17);

beta1 = Constant(8); muh = Constant(18);

beta2 = Constant(9); muv = Constant(19);

beta3 = Constant(10); mup = Constant(20);

% Defining State Equations and total population

u1=U(1); u2=U(2);u3=U(3);
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% Total population

Nh = Sh+Vh+Eh+Ih+Rh;

Nv = Sv+Ev+Iv;

Np = Sp+Ep+Ip;

% State Equations (ODE)

ydot1 = bh*Nh+Lambda*(1-rho)+omega*(Vh+Rh)-...

(a*beta1*Sh*Iv*(1-u1))./Nv-...

epsilon*(1+u2)*Sh-muh*Sh;

ydot2 = rho*Lambda+epsilon*(1+u2)*Sh-Vh*omega-muh*Vh;

ydot3 = (a*beta1*Sh*Iv*(1-u1))./Nv-Eh*deltah-Eh*muh;

ydot4 = deltah*Eh-(muh+alpha)*Ih-gamma*(1+u2)*Ih;

ydot5 = gamma*Ih*(1+u2)-Rh*muh-omega*Rh;

ydot6 = bv*Nv*(1-u3)-(a*beta2*Sv*Ih*(1-u1))./Nh-

...(a*beta3*Sv*Ip)./Np-muv*Sv*(1+u3);

ydot7 = (a*beta2*Sv*Ih*(1-u1))./Nh+(a*beta3*Sv*Ip)./Np-

...deltav*Ev-muv*Ev*(1+u3);

ydot8 = deltav*Ev-muv*Iv*(1+u3);

ydot9 = bp*Np-(a*beta4*Sp*Iv)./Nv-mup*Sp;

ydot10 = (a*beta4*Sp*Iv)./Nv-deltap*Ep-mup*Ep;

ydot11 = deltap*Ep-mup*Ip;

ydot=[ydot1; ydot2; ydot3; ydot4; ydot5; ydot6;

ydot7; ydot8; ydot9; ydot10; ydot11];

% Defining function which solves co-state (adjoint)

system with eleven equations by Monie, 2014

function ydot = jims_costate(t,y,U,X,Constant);
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% Setting of adjoint variables

L1 = y(1); L6 = y(6); L9 = y(9);

L2 = y(2); L7 = y(7); L10 = y(10);

L3 = y(3); L8 = y(8); L11 = y(11);

L4 = y(4);

L5 = y(5);

% Defining constants

bh = Constant(1); beta3 = Constant(10);

bv = Constant(2); beta4 = Constant(11);

bp = Constant(3); epsilon = Constant(12);

Lambda = Constant(4); alpha = Constant(13);

rho = Constant(5); deltah = Constant(14);

omega = Constant(6); deltav = Constant(15);

a = Constant(7); deltap = Constant(16);

beta1 = Constant(8); gamma = Constant(17);

beta2 = Constant(9); muh = Constant(18);

muv = Constant(19); B1 = Constant(23);

mup = Constant(20); B2 = Constant(24);

A1 = Constant(21); B3 = Constant(25);

A2 = Constant(22);

u1 = U(1); u2=U(2); u3=U(3);

Sh=X(1,:); Vh = X(2,:); Eh = X(3,:); Ih=X(4,:);

Rh=X(5,:); Sv=X(6,:); Ev=X(7,:); Iv=X(8,:);

Sp=X(9,:); Ep=X(10,:); Ip=X(11,:);

% Defining total population

130



Nh = Sh+Vh+Eh+Ih+Rh;

Nv = Sv+Ev+Iv;

Np = Sp+Ep+Ip;

% Defining co-state (adjoint) equations

ydot1 = L1*((a*beta1*Iv*(1-u1))./Nv+(epsilon*(1+u2))+...

muh)-L2*epsilon*(1+u2)-L3*a*beta1.*Iv*(1-u1);

ydot2 = L2*(omega+muh)-L1*omega;

ydot3 = -A1+L3*(deltah+muh)-(L4*deltah);

ydot4 = -A2+(L6-L7)*(a*beta2.*Sv.*(1-u1))./Nh-...

L5*(gamma*(1+u2))+L4*(muh+alpha+gamma*(1+u2));

ydot5 = L5*(omega+muh)-L1*omega;

ydot6 = (L6-L7)*((a*beta2*Ih*(1-u1))./Nh+...

(a*beta3*Ip)./Np)+(L6*muv*(1+u3));

ydot7 = L7*(deltav+muv)-L8*deltav;

ydot8 = (L1-L3)*(a*beta1*Sh*(1-u1))./Nv+...

((L9-L10)*a*beta4*Sp)./Nv+(L8*muv*(1-u3));

ydot9 = (L9-L10)*(a*beta4*Iv)./Nv+L9*mup;

ydot10 = L10*(deltap+mup)+L11*deltap;

ydot11 = (L6-L7)*(a*beta3*Sv)./Np+L11*mup;

ydot=[ydot1; ydot2; ydot3; ydot4; ydot5; ydot6;

ydot7; ydot8; ydot9; ydot10; ydot11];

% RUNNING FILE

clear all

close all

clc

t0 = 0; tf=365; N=7300;

time =linspace(t0,tf,N);
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% Estimated initial condition for state system

y0 = [350 250 150 150 100 250 150 100 250 150 100];

% Defining constants

bh= Constant(1); omega= Constant(6);

bv= Constant(2); a= Constant(7);

bp= Constant(3); beta1= Constant(8);

Lambda= Constant(4); beta2= Constant(9);

rho= Constant(5); beta3= Constant(10);

beta4= Constant(11); epsilon= Constant(12);

alpha= Constant(13); deltah= Constant(14);

deltav= Constant(15);

deltap= Constant(16); A1= Constant(21);

gamma= Constant(17); A2= Constant(22);

muh= Constant(18); B1= Constant(23);

muv= Constant(19); B2= Constant(24);

mup= Constant(20); B3= Constant(25);

% Defining constant values

bh bv bp Lambda rho omega a beta1 beta2 beta3

beta4 epsilon alpha deltah deltav deltap gamma

muh muv mup A1 A2 B1 B2 B3

Constant = [0.0003 0.002 0.00004 70 0.02 0.05

0.5 0.8 0.8 0.5 0.9 0.5 0.001 0.95 0.95 0.85

0.05 0.02 0.03 0.1 1000 1000 0.0001 1000 0.01];
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lf = [0 0 0 0 0 0 0 0 0 0 0];

init = y0;

init2 = lf;

h = (tf-t0)/N;

u = linspace(0,0,N+1);

u1=u’; u2=u’; u3=u’;

U = [u1 u2 u3];

% Implementation of the algorithm

% Test 1 stopping condition 1

delta = 0.001;

X=init;

% Initialize iteration counter

i = 0;

mm = size(X);

NumXX = 10e10;

Xnew = rand(N+1,mm(2)).*(repmat(X,N+1,1));

DenXnew = norm(Xnew);

while NumXX/DenXnew>delta

Xold = Xnew;

oldu = U;

% Forward Runge-Kutta for States System

[Tx, X] = rk4foward(@jims,t0,tf,N,init,U,Constant);

% Backward Runge-Kutta for Costates System
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[Tp, P]=rk4back(@jims_costate,t0,tf,N,init2,U,X,Constant);

% Update the controls

Sh=X(1,:);Vh = X(2,:);Eh = X(3,:);Ih=X(4,:); Rh=X(5,:);

Sv=X(6,:);Ev=X(7,:);Iv=X(8,:); Sp=X(9,:);Ep=X(10,:);

Ip=X(11,:);

% Defining total population

Nh = Sh+Vh+Eh+Ih+Rh;

Nv = Sv+Ev+Iv;

Np = Sp+Ep+Ip;

L1 = P(1,:); L2 = P(2,:); L3 = P(3,:); L4 = P(4,:);

L5 = P(5,:); L6 = P(6,:); L7 = P(7,:); L8 = P(8,:);

L9 = P(9,:); L10 = P(10,:); L11 = P(11,:);

% Implementation of the cases; Do one after the other

in each time.

% Case0: No control,

u1 = zeros(1,N+1);

u2 = zeros(1,N+1);

u3 = zeros(1,N+1);

% Case1: u1/=0, u2=0, u3=0

u1 = max(0,min(1,1/(2*B1).*(L3-L1).*(a.*beta1.*Sh.*Iv)./

...Nv+(L7-L6).*(a.*beta2.*Sv.*Ih)./Nh));

u2 = zeros(1,N+1);

u3 = zeros(1,N+1);
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% Case2: u1=0, u2/=0, u3=0

u1 = zeros(1,N+1);

u2 = max(0,min(1,1/(2*B2).*(epsilon.*(L1-L2).*Sh+...

gamma.*(L4-L5).*Ih)));

u3 = zeros(1,N+1);

% Case3: u1=0, u2=0, u3/=0

u1 = zeros(1,N+1);

u2 = zeros(1,N+1);

u3 = max(0,min(1,1/(2*B3).*L6.*(bv.*Nv+muv.*Sv)+...

(L7.*muv.*Ev)+(L8.*muv.*Iv)));

% Case4: u1/=0, u2/=0, u3=0

u1 = max(0,min(1,1/(2*B1).*(L3-L1).*(a.*beta1.*Sh.*Iv)./

...Nv+(L7-L6).*(a.*beta2.*Sv.*Ih)./Nh));

u2 = max(0,min(1,1/(2*B2).*(epsilon.*(L1-L2).*Sh+...

gamma.*(L4-L5).*Ih)));

u3 = zeros(1,N+1);

% Case5: u1/=0, u2=0, u3/=0

u1 = max(0,min(1,1/(2*B1).*(L3-L1).*(a.*beta1.*Sh.*Iv)./

...Nv+(L7-L6).*(a.*beta2.*Sv.*Ih)./Nh));

u2 = zeros(1,N+1);

u3 = max(0,min(1,1/(2*B3).*L6.*(bv.*Nv+muv.*Sv)+...

(L7.*muv.*Ev)+(L8.*muv.*Iv)));

% Case6: u1=0, u2/=0, u3/=0

u1 = zeros(1,N+1);

u2 = max(0,min(1,1/(2*B2).*(epsilon.*(L1-L2).*Sh+...
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gamma.*(L4-L5).*Ih)));

u3 = max(0,min(1,1/(2*B3).*L6.*(bv.*Nv+muv.*Sv)+...

(L7.*muv.*Ev)+(L8.*muv.*Iv)));

%Case7: u1/=0, u2/=0, u3/=0

u1 = max(0,min(1,1/(2*B1).*(L3-L1).*(a.*beta1.*Sh.*Iv)./

...Nv+(L7-L6).*(a.*beta2.*Sv.*Ih)./Nh));

u2 = max(0,min(1,1/(2*B2).*(epsilon.*(L1-L2).*Sh+...

gamma.*(L4-L5).*Ih)));

u3 = max(0,min(1,1/(2*B3).*L6.*(bv.*Nv+muv.*Sv)+...

(L7.*muv.*Ev)+ (L8.*muv.*Iv)));

Uu = [u1’ u2’ u3’];

U = 0.5*Uu + 0.5*oldu;

Xnew = X’;

NumXX = abs(norm(Xnew-Xold));

DenXnew = norm(Xnew);

% Update iteration counter

i=i+1

end

% Plotting

X=X’;

Tx =Tx’;

XX=X(:,3); YY=X(:,4);

Up = [0 0 0];
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[T,Y] = ode45(@jims,time,y0,[],Up,Constant);

J=sum(A1*XX(end)+A2*YY(end)+B1*Uu(:,1).*Uu(:,1)+...

B2*Uu(:,2).*Uu(:,2)+B3*Uu(:,3).*Uu(:,3));

Z = [Tx,X];

cd(’C:\Users\Monicapc\Desktop\Monica_Optimalcontrolcode’)

save(’case1State’, ’Z’);

save(’case1Control’, ’Uu’);

save(’Cost’, ’J’);

figure(1)

subplot(2,1,1)

plot(Tx,X(:,3),’-b’, T, Y(:,3),’--r’,’LineWidth’,3);

legend(’with control’, ’without control’,3)

xlabel(’Time (days)’, ’Fontsize’,14)

ylabel(’Exposed human’, ’Fontsize’,14)

grid on

hold on

subplot(2,1,2)

plot(Tx,X(:,4),’-b’,T, Y(:,4),’--r’,’LineWidth’,3);

legend(’with control’,’without control’,3)

xlabel(’Time (days)’,’Fontsize’,14)

ylabel(’Infected human’,’Fontsize’,14)

grid on

hold on

figure(2)

plot(Tx,Uu(:,1),’-g’,’LineWidth’,3); hold on
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plot(Tx,Uu(:,2),’--m’,’LineWidth’,3);hold on

plot(Tx,Uu(:,3),’--k’,’LineWidth’,3)

xlabel(’Time (days)’,’Fontsize’,14)

ylabel(’Control Profile’,’Fontsize’,14)

legend(’u_1(t)’,’u_2(t)’,’u_3(t)’,’Fontsize’,14)

grid on

hold off
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Appendix C

Matlab codes for Figures of Chapter Five

% Defining function that highlights about the cost

of implementing PEI control programme over time

by Monie 2015.

function I = odes(t,y,Nv,Np,bh,rho,omega,a,beta1,

epsilon,muh, Lambda,deltah,alpha,gamma,

bv,beta2,beta3,deltav,muv,bp,beta4,mup,

deltap,eta,Cp,Ce,Ci,nu,r,DW,K,C,b,L1,a1,a2,L2)

% Definition of variables

Sh = y(1); Sv=y(6); Sp=y(9);

Vh = y(2); Ev=y(7); Ep=y(10);

Eh = y(3); Iv=y(8); Ip=y(11);

Ih = y(4);

Rh = y(5);

% Defining total function for human

Nh=sum(y(1:5));

% Defining system of equations (ODE)

ydot1 = bh.*Nh+Lambda*(1-rho)+omega.*(Vh+Rh)-...

((a*beta1).*Sh.*Iv)./Nv-epsilon.*Sh-muh.*Sh;

ydot2 = rho*Lambda+epsilon.*Sh-omega.*Vh-muh.*Vh;

ydot3 = ((a*beta1).*Sh.*Iv)./Nv-deltah.*Eh-muh.*Eh;

ydot4 = deltah.*Eh-(muh+alpha).*Ih-gamma.*Ih;

ydot5 = gamma.*Ih-muh.*Rh-omega.*Rh;

ydot6 = bv.*Nv-((a*beta2).*Sv.*Ih)./Nh-...
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((a*beta3).*Sv*Ip)./Np-muv.*Sv;

ydot7 = ((a*beta2).*Sv.*Ih)./Nh+((a*beta3).*Sv.*Ip)./Np-

...deltav.*Ev-muv.*Ev;

ydot8 = deltav.*Ev-muv.*Iv;

ydot9 = bp.*Np-((a*beta4).*Sp.*Iv)./Nv-mup.*Sp;

ydot10 = ((a*beta4).*Sp.*Iv)./Nv-deltap.*Ep-mup.*Ep;

ydot11 = deltap.*Ep-mup.*Ip;

I = [ydot1; ydot2; ydot3; ydot4; ydot5; ydot6;

ydot7; ydot8; ydot9; ydot10; ydot11];

function I=integration(t,y,Nv,Np,bh,rho,omega,a,beta1,

epsilon,muh,Lambda,deltah,alpha,gamma,bv,

beta2,beta3,deltav,muv,bp,beta4,mup,deltap,

eta,Cp,Ce,Ci,nu,r,DW,K,C,b,L1,a1,a2,L2)

Nh=sum(y(1:5));

Nv=sum(y(6:8));

Eh=y(3);

Sh=y(1);

Iv=y(8);

Ih=y(4);

global ii, global jj;

gg=(20-(((a*beta1).*Sh.*Iv)./Nv)./Nh).*exp(-r*t);

GG=(0.5-alpha*Ih).*exp(-r*t);

140



% Defining cost function

f=(Cp.*eta(ii).*Nh+Ce.*nu(jj).*Nh+Ci).*exp(-r.*t);

%Integrating total cost and other functions using

trapezoidal rule for i=2:length(t)

Ctc_trapz(i)=trapz(t(1:i),f(1:i));

g1(i)=trapz(t(1:i),gg(1:i));

G1(i)=trapz(t(1:i),GG(1:i));

End

%Defining YLLs and YLDs functions

YLLs = (K*C.*exp(r*a1))/((r+b).ˆ2)*(exp-(r+b)*(L1+a1))*

...(-(r+b)*(L1+a1)-1)-exp-(r+b)*a1*(-(r+b)*a1-1)+

...(1-K)./r*(1-exp(-r*L1));

YLDs = DW*(K*C.*exp(r*a2))/((r+b).ˆ2)*(exp-(r+b)*(L2+a2)*

...(-(r+b)*(L2+a2)-1)-exp-(r+b)*a2*(-(r+b)*a2-1)+

...DW*(1-K)./r*(1-exp(-r*L2)));

% Defining DALYs averted function

DALYs_averted=YLLs*G1+YLDs*g1;

% Defining CER per DALYs averted function

CER_averted = Ctc_trapz(end)./DALYs_averted

CER = Ctc_trapz(end)./g1;

% Obtaining transpose of the functions

I = [Ctc_trapz’ CER’ CER_averted’];
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% RUNNING FILE;

clear all

close all

clc

tspan = 0:3:90;

% The estimated initial values

y0=[350 250 150 150 100 250 150 100 250 150 100];

Nv=sum(y0(5:7));

Np=sum(y0(8:10));

% Defining parameter values

DW=0.45; K=1; C=0.16243; b=0.04; L1=100; a1=30.42;

a2=34; L2=32; bh=0.003; bv=0.01; bp=0.04; Lambda=70;

rho=0.02; omega=0.05; a=1; beta1=0.9; beta2=0.9;

beta3=0.5; beta4=0.9; alpha=0.001; deltah=0.05;

deltav=0.02; deltap=0.85; gamma = 0.05; muh=0.05;

muv=0.02; mup=0.03;

eta=[0.001 0.002 0.003 0.004];

nu=[0.002 0.004 0.006 0.008];

r=0.03; epsilon=0.005; Cp=0.5; Ce=0.6; Ci=0.8;

c = [’r’,’b’,’g’,’k’];

opt = odeset(’RelTol’,1e-00006);

global ii, global jj;

ii=1;

jj=1;
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[t,y] = ode45(@odes,tspan,y0,opt,Nv,Np,bh,rho,

omega,a,beta1,epsilon,muh,Lambda,deltah,alpha,

gamma,bv,beta2,beta3,deltav,muv,bp,beta4,mup,

deltap,eta,Cp,Ce,Ci,nu,r,DW,K,C,b,L1,a1,a2,L2);

for ii=1:4

I=integration(t,y,Nv,Np,bh,rho,omega,a,beta1,

epsilon,muh,Lambda,deltah,alpha,gamma,bv,beta2,

beta3,deltav,muv,bp,beta4,mup,deltap,

eta,Cp,Ce,Ci,nu,r,DW,K,C,b,L1,a1,a2,L2);

% Plotting

figure(1)

subplot(1,2,1)

hold on

plot([t(1) t(end)],[I(1,1) I(end,1)],c(ii),’linewidth’,2)

xlabel(’time in days’,’Fontsize’,14)

ylabel(’Costs in USD (X10ˆ3)’,’Fontsize’,14)

xlim([0 t(end)])

legend(’\eta=0.01’,’\eta=0.02’,’\eta=0.03’,’\eta=0.04’)

end

ii=1;

for jj=1:4

I=integration(t,y,Nv,Np,bh,rho,omega,a,beta1,epsilon,

muh,Lambda,deltah,alpha,gamma,bv,beta2,beta3,deltav,

muv,bp,beta4,mup,deltap,eta,Cp,Ce,Ci,nu,r,DW,K,C,b,

L1,a1,a2,L2);
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figure(2)

subplot(1,2,2)

hold on

plot([t(1) t(end)],[I(1,1) I(end,1)],c(jj),’linewidth’,2)

xlabel(’time in days’,’Fontsize’,14)

ylabel(’Costs in USD (X10ˆ3)’,’Fontsize’,14)

xlim([0 t(end)])

legend(’\nu=0.02’,’\nu=0.04’,’\nu=0.06’,’\nu=0.08’)

end

jj=1;

for ii=1:4

I=integration(t,y,Nv,Np,bh,rho,omega,a,beta1,

epsilon,muh,Lambda,deltah,alpha,gamma,bv,beta2,

beta3,deltav,muv,bp,beta4,mup,deltap,

eta,Cp,Ce,Ci,nu,r,DW,K,C,b,L1,a1,a2,L2);

figure(3)

plot(t, I(:,2),c(ii), ’linewidth’, 2)

xlabel(’days since the start of the programme’,’Fontsize’,14)

ylabel(’CER per infection avoided’,’Fontsize’,14)

xlim([0 t(end)])

legend(’\eta=0.01’,’\eta=0.02’,’\eta=0.03’,’\eta=0.04’)

hold on

end

ii=1;

for jj=1:4

I=integration(t,y,Nv,Np,bh,rho,omega,a,beta1,epsilon,
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muh,Lambda,deltah,alpha,gamma,bv,beta2,beta3,deltav,

muv,bp,beta4,mup,deltap,eta,Cp,Ce,Ci,nu,r,DW,K,C,b,

L1,a1,a2,L2);

figure (4)

plot(t, I(:,2), c(jj),’linewidth’, 2)

xlabel(’days since the start of the programme’,’Fontsize’,14)

ylabel(’CER per infection avoided’,’Fontsize’,14)

xlim([0 t(end)])

legend(’\nu=0.02’,’\nu=0.04’,’\nu=0.06’,’\nu=0.08’)

hold on

end

jj=1;

for ii=1:4

I=integration(t,y,Nv,Np,bh,rho,omega,a,beta1,epsilon,

muh,Lambda,deltah,alpha,gamma,bv,beta2,beta3,deltav,

muv,bp,beta4,mup,deltap,eta,Cp,Ce,Ci,nu,r,DW,K,C,b,

L1,a1,a2,L2);

figure(5)

plot(t, I(:,2),c(ii),’linewidth’, 2)

xlabel(’days since the start of the programme’,’Fontsize’,14)

ylabel(’CER per DALY_{averted}’,’Fontsize’,14)

xlim([0 t(end)])

legend(’\eta=0.01’,’\eta=0.02’,’\eta=0.03’,’\eta=0.04’)

grid on

hold on

end

145



ii=1;

for jj=1:4

I=integration(t,y,Nv,Np,bh,rho,omega,a,beta1,epsilon,

muh,Lambda,deltah,alpha,gamma,bv,beta2,beta3,deltav,

muv,bp,beta4,mup,deltap,eta,Cp,Ce,Ci,nu,r,DW,K,C,b,

L1,a1,a2,L2);

figure (6)

plot(t, I(:,3), c(jj),’linewidth’, 2)

xlabel(’days since the start of the programme’,’Fontsize’,14)

ylabel(’CER per DALY_{averted}’,’Fontsize’,14)

xlim([0 t(end)])

legend(’\nu=0.02’,’\nu=0.04’,’\nu=0.06’,’\nu=0.08’)

grid on

hold on

end
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Appendix D

Local Stability Analysis of E0

Trace-determinant approach of Jacobian Matrix

To establish local stability of disease-free equilibrium, the Jacobian of the model system 3.4

is computed and evaluated at E0. The local stability of E0 is then determined based on the

trace-determinant approach of this Jacobian. The equilibrium E0 is locally stable if trace of the

Jacobian matrix is less than zero and determinant of the same matrix is greater than zero.

If we let the right hand sides of the model equations 3.4 to be represented by the functions

(f1, f2, ..., f11), at steady state the Jacobian of 3.4 is given by;

Ji =
∂fi
∂xj

, (A.1)

where,

fi , i = 1, 2, ..., 11. and xj(j = 1, 2, ..., 11) represent sh, vh, eh, ih, rh, sv,

ev, iv, sm, em, im, respectively.

Thus, the following matrix is obtained;

JE0 =



−b1 ω 0 αs◦h ω 0 0 −η 0 0 0

ε −b2 0 αvoh 0 0 0 0 0 0 0

0 0 −b3 0 0 0 0 η 0 0 0

0 0 δh −b4 0 0 0 0 0 0 0

0 0 0 γ −b5 0 0 0 0 0 0

0 0 0 0 0 −bv 0 0 0 0 −aβ3

0 0 0 0 0 0 −b7 0 0 0 aβ3

0 0 0 0 0 0 δv −bv 0 0 0

0 0 0 0 0 0 0 −aβ4 −bm 0 0

0 0 0 0 0 0 0 aβ4 0 −b10 0

0 0 0 0 0 0 0 0 0 δm −bm



. (A.2)
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where, b1 = (ε+ bh + σ), b2 = (ω + bh + σ), b3 = (δh + bh + σ), η = aβ1s
◦
h

b4 = (α + γ + bh + σ), b5 = (ω + bh + σ), b7 = (δv + bv), b10 = (δm + bm).

As seen from the matrix trace of JE0 < 0, we can now find the determinant of the

same matrix by reducing the dimensions of the matrix as follows;

The sixth and ninth columns have diagonal entries, thus excluding these columns and their

corresponding rows we remain with 9× 9 matrix given by

M = (bvbm)



−b1 ω 0 αs◦h ω 0 −η 0 0

ε −b2 0 αvoh 0 0 0 0 0

0 0 −b3 0 0 0 η 0 0

0 0 δh −b4 0 0 0 0 0

0 0 0 γ −b5 0 0 0 0

0 0 0 0 0 0 −b7 0 aβ3

0 0 0 0 0 δv −bv 0 0

0 0 0 0 0 0 aβ4 −b10 0

0 0 0 0 0 0 0 δm −bm



, (A.3)

whereby the determinant of M is now given by

−b1



−b2 0 αv◦h 0 0 0 0 0

0 −b3 0 0 0 η 0 0

0 δh −b4 0 0 0 0 0

0 0 γ −b5 0 0 0 0

0 0 0 0 −b7 0 0 aβ3

0 0 0 0 δv −bv 0 0

0 0 0 0 0 aβ4 −b10 0

0 0 0 0 0 0 δm −bm


− ε



ω 0 αs◦h ω 0 −η 0 0

0 −b3 0 0 0 η 0 0

0 δh −b4 0 0 0 0 0

0 0 γ −b5 0 0 0 0

0 0 0 0 −b7 0 0 aβ3

0 0 0 0 δv −bv 0 0

0 0 0 0 0 aβ4 −b10 0

0 0 0 0 0 0 δm −bm


,
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further calculation gives

b1b2



−b3 0 0 0 η 0 0

δh −b4 0 0 0 0 0

0 γ −b5 0 0 0 0

0 0 0 −b7 0 0 aβ3

0 0 0 δv −bv 0 0

0 0 0 0 aβ4 −b10 0

0 0 0 0 0 δm −bm


− εω



−b3 0 0 0 η 0 0

δh −b4 0 0 0 0 0

0 γ −b5 0 0 0 0

0 0 0 −b7 0 0 aβ3

0 0 0 δv −bv 0 0

0 0 0 0 aβ4 −b10 0

0 0 0 0 0 δm −bm


.

Since we have a common matrix we can factor it out

bvbm(b1b2 − εω)



−b3 0 0 0 η 0 0

δh −b4 0 0 0 0 0

0 γ −b5 0 0 0 0

0 0 0 −b7 0 0 aβ3

0 0 0 δv −bv 0 0

0 0 0 0 aβ4 −b10 0

0 0 0 0 0 δm −bm


.

Let A = bvbm(b1b2 − εω), we can further reduce the dimension of the matrix to remain with

4× 4 matrix given by

M =

A(b5b4b3)


−b7 0 0 aβ3

δv −bv 0 0

0 aβ4 −b10 0

0 0 δm −bm


 . (A.4)

Again we may let B = A(b5b4b3) in (A.4) and substitute b7 and b10 to have

M =

B


−(δv + bv) 0 0 aβ3

δv −bv 0 0

0 aβ4 −(δm + bm) 0

0 0 δm −bm


 . (A.5)
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The determinant of matrix M in (A.5) will then be given by

−B(δv + bv)


−bv 0 0

aβ4 −(δm + bm) 0

0 δm −bm

−Bδv


0 0 aβ3

aβ4 −(δm + bm) 0

0 δm −bm

 ,
whereby computation gives

det M = Bbv(δv + bv)bm(δm + bm)−Baδvβ3(aβ4δm).

Further simplification gives

det M = B[bv(δv + bv)bm(δm + bm)− (a2β3β4δvδm)]. (A.6)

det M = B

[
1− a2β3β4δvδm

bv(δv + bv)bm(δm + bm)

]
bv(δv + bv)bm(δm + bm),

det M = B [1−Rmv] bv(δv + bv)bm(δm + bm). (A.7)

For det M to be > 0 we should have Rmv < 1 which leads to the following theorem.

Theorem A.9. The disease-free equilibrium point E0 of model system 3.4 is locally asymptoti-

cally stable if Rmv < 1 and unstable if Rmv > 1.
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