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ABSTRACT

In this dissertation, deterministic and stochastic mathematical models for a deformable per-

turbed continuously stirred tank reactor (CSTR) with exothermic and endothermic reactions

have been developed and analysed. The Ordinary Differential Equations (ODEs) were obtained

by using the Reynold transport theorem and Stochastic Differential Equations (SDEs) were de-

rived in the It̂o sense from the developed classical deterministic models. There were four types

of SDEs formulation, namely, additive SDE, multiplicative SDE, parameter perturbation SDE

and transition probabilities SDE. The numerical results of the developed models were obtained

and analysed through statistical and Bayesian methods. These methods were Classical Least

Squares (LSQ) and Markov chain Monte Carlo (MCMC) for ODES while the Euler-Maruyama

technique was used to simulate the SDEs. The LSQ numerical �ndings showed that the mea-

surements �t theoretical models well provided that the noise intensity ranges between0 and0:5.

The MCMC results identi�ed the parameters posterior means and the credible intervals in which

models parameters must be oscillating. The PRCCs with Latin Hypercube Sampling technique

were applied to check the sensitivity and uncertainty quanti�cation of estimated parameters

against the models' response. Some of the parameters of models were found to be highly and

positively correlated with models' states and others were highly and negatively correlated with

models' state variables. For example, seven parameters were found to be highly correlated with

exothermic CSTR model whilst six parameters were identi�ed to be highly correlated with en-

dothermic CSTR model. This implies that those parameters have to be controlled and treated

carefully as the increase or decrease in their values signi�cantly impact the models' outcomes.

For the case of stochastic part, simulations of SDEs revealed that high �uctuations notably af-

fect trajectories of the variables. The overall numerical results obtained seem to be reliable and

have shown an insight in describing the dynamics of the CSTR deterministic and stochastic

models with detailed mathematical and statistical information. So, the formulated models were

analysed, validated and can be used to model and describe various mechanical, biological and

chemical processes such as �ltration, anaerobic respiration and combustion among others.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

From the 19th century until the middle of 20th century, Continuously Stirred Tank Reactors

(CSTRs) were designed to be used for waste treatments, military tools to produce mustard

gas, medical sample tubes to collect patients' samples, nuclear reactors to produce nuclear

energies, hand-crafts tools in colour painting. All these reactors were in type of pots, vessels,

tubes, chambers, containers, apparatuses and towers as stated in Rowse (2011) and Kockmann

(2019). Before 21st century, there was no clear difference between reactors and all of them

were categorised as reactors regardless their functionality behaviours (Kockmann, 2019). It is

from 21st century where scientists, engineers and design engineers tried to distinguish these

reactors depending on their functionalities and their production abilities ranging from batch

processing to continuous stirred processing (Kockmann, 2019). Now, CSTRs are very useful

chemical reactors that produce chemical products from the given inputs of reactants (Telenet al.,

2014). The complexity and the non-linearity dynamical behaviours of CSTRs have attracted

many researchers, especially mathematicians who can contribute to determining, predicting,

estimating parameters and controlling the states of these reactors. Examples of reactants and

products include alcohols, polymers from monomers, fertilisers, pharmaceutical products and

renewable energies from biogas process, among others. According to Vojteseket al. (2008),

mathematical understanding of how these tanks behave, is of great importance for solving,

predicting and controlling them. It is moreover, important to analyse the effect of deformation

and the perturbation that may be present in the CSTRs' models during processing. Different

sources of deformation and perturbation which may be observed in CSTRs are from the change

in feeding rates, environmental disturbances and measurements imperfect, among others.

1.2 Problem Statement

A great number of scholars reported that the mathematical formulation, the parameter estima-

tion, methods to be used, control and the prediction of reactors seem to be a challenge due to

reactors' non-linearity behaviour. To mention few from where the research idea in this study has

been drawn, Oravecet al.(2018) revealed that robust model predictive control method is a good
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method for CSTRs, however it is a challenging task for controlling and predicting CSTRs due

to their non-linearities' behavior present in their models as well as time-varying uncertainties

in its parameters. They further captioned that �nding a suitable mathematical formulation for a

complex process maybe a challenging task. Shakeriet al. (2018) have shown that over the past

years, stochastic CSTRs models have been given little attention. They argued that there is a need

to develop stochastic CSTRs models that may be able to describe and capture the randomness

aspects in the system. Another challenge of having some of non-converging CSTRs' param-

eters is found in Muhirwaet al. (2017). Rowse (2011) claimed that choosing inappropriate

range of CSTR's parameters impacts the expected yields from CSTRs while on the other hand,

Karimi et al. (2014) mentioned that it is very important to take care of stochastic disturbance

intensities into CSTR models by considering a wide range of parameter estimation problems

with prior knowledge about the parameters. Many researchers ignored deformation which may

alter the scale of production conversion (Yamamotoet al., 2019). Others do not consider the

perturbation of the tanks by not taking into consideration of noise which is a measure of how the

process responds to the external disturbances like stochastic excitement and change in feeding

rates (Karimiet al., 2014). In the literature, a great number of scholars focus on only two or

three states deterministic models with a �rst order simple exothermic irreversible models, for

instance, Sinhaet al. (2018). In addition, they considered very simpli�ed assumptions such as

constant volume, constant densities, and areas of the tanks as well as isothermal CSTRs (Sinha

et al., 2018). Therefore, this research aims at addressing some of these gaps by considering

non-isothermal and both non-deterministic and deterministic models as the tanks may behave

stochastically as can be found in Karimiet al. (2014). This research will further construct and

display CSTR models that consider the �rst-order irreversible events with the variation of vol-

umes. The other research gaps that will be addressed by the researchers is to solve and identify

physical parameters of both variable-volume endothermic and exothermic CSTR models with

four state variables namely, volumes, concentrations, reacting tanks' temperature and cooling

or heating jackets'temperature.

1.3 Rationale of the Study

Most of the real life problems are modelled, solved and analysed using mathematical concepts.

The same concepts are applied in chemical engineering, whereby the dynamics of the chemical

reactors are modelled, solved, analysed, controlled and predicted mathematically. Hence, math-
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ematical understandings of chemical industrial processes which ranges from industrial research,

industrial development and extends to industrial operations are among the best approaches to

minimize the risk of industrial's prototyping process. Cost for performing a physical-chemical

laboratory experiment on the real chemical industry processes is inventively high. Combining

laboratory experiments with mathematical modeling and computer experiments by simulations

could lead to wastage of resources due to the tremendous cost. This may even lead to some

unexpected hazards. As a result, a simple theoretical mathematical analysis provides a piece

of very necessary and useful information for not only the global scientists, engineers and de-

signers but also for the East-African scientists, engineers and designers as their countries are

calling investors to install pharmaceutical industries, especially, Rwanda (Emmanuel, 2017).

Such information assists them to design cost effectively and more appropriate prototypes and

production systems. The focus of this research is neither the construction of prototypes nor the

creation of the physical-chemical industries' tanks rather it is the development of a mathemati-

cal model and its simulations for the understanding of the behaviour of these tanks to generate

knowledge that may help design engineers, chemical and process engineers to design suitable

prototypes and produce physical tanks for chemical industries cost effectively.

1.4 Research Objectives

1.4.1 General Objective

The general objective of this research is to develop deterministic and stochastic deformable-

perturbed CSTRs' models, and use Bayesian and statistical methods to analyse them.

1.4.2 Speci�c Objectives

This research has the following �ve speci�c objectives:

(i) To formulate perturbed exothermic and endothermic CSTRs' models both deterministic

and stochastic;

(ii) To perform numerical simulations of the formulated CSTRs' models and determine the

effectiveness of different numerical methods in solving these models;

(iii) To assess the effect of perturbation on the CSTRs' models;

(iv) To determine the impact of CSTRs' deformation;
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(v) To simulate an actual real-life chemical problem as an application of CSTRs.

1.5 Research Questions

The following are the research questions that have to be addressed in this study:

(i) Can we formulate suitable and analysable non-deterministic and deterministic mathemat-

ical models for CSTR?

(ii) Can we �nd effective methods to solve CSTR models?

(iii) What is the effect of perturbations on CSTR models?

(iv) Is there deformation impact on CSTR models?

(v) Is there a real-life application of CSTR?

1.6 Signi�cance of the Study

Continuously stirred tank reactor (CSTR) is very useful and important production tool in chemi-

cal engineering. This kind of tank reactor exhibits non-linear and complex dynamical behaviour

which makes it to be very dif�cult to analyse, control and predict. Mathematical modelling and

analysis of the CSTR help in determining the dynamical evolution of the CSTR's states. Com-

bining experimental studies with numerical simulations of reactors mostly leads to unnecessary

waste of resources and may cause unpredicted hazards. This dissertation numerically solves and

analyses the dynamics of the CSTR's models which incorporate variable-volume and stochas-

tic aspects, quantitatively. As a result, this study serves as a primary source of knowledge for

chemical and design engineers towards the production of appropriate and suitable physical tank

reactors with reasonable cost.

1.7 Delineation of the Study

In this study, deterministic and stochastic mathematical models for the CSTR with a variable-

volume are formulated (Chapter 3) and numerically solved and analysed (Chapter 4). Due to

unavailability of the CSTR's primary data, the numerical results obtained were not based on the

actual real data but simulated data from the models using literature values.
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It was very important for chemical and design engineers to know better about the estimate

values of the physical quantities of the CSTR, namely, variables and parameters. In addition,

to be aware about the magnitude of the effects of perturbation and deformation which may

occur on the CSTR's models, from various sources was of a paramount bene�t for the CSTR

designing process. Even if the dynamical evolution of CSTR with cooling / heating process has

been analysed in this dissertation, the following limitations were encountered:

(i) The formulated models both deterministic and stochastic were non-linear and have a great

number of unknown parameters and hence complex, hence only numerical results of mod-

els have been obtained;

(ii) Due to unavailability of real data, data simulated from literature values have been used.

With more time, real data can be sought and analysed to really identify CSTRs' models

in future;

(iii) Due to computational facilities, the formulated models were not computed in parallel.

However, this can be done in the presence of facilities like High Performance Computing

(HPC).
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CHAPTER TWO

LITERATURE REVIEW

2.1 Literature Review on Types of Chemical Reactors and their Descriptions

According to Foutchet al. (2003), Moranet al. (2000), Theodore (2012), Finlayson (2012)

and Couperet al. (2009), there is no simple way of classifying chemical reactors due to the

complexity, non-linearity term of the system and the variable of interest. However, there is

a common way of classifying them depending on their operational behaviour, reaction phases

namely homogeneous (one phase, either liquid phase, gas phase or solid phase) or heteroge-

neous (more than one phase, either liquid-gas, gas-liquid, solid-gas, gas-solid, solid-liquid-gas,

gas-solid-liquid, gas-liquid-solid, etc.), reaction types (exothermic reactions which can release

heat energy and endothermic reactions which can acquire heat energy to react). Advantages and

disadvantages of these tanks which may be scienti�c or economical play a big role in differen-

tiating the chemical reactors in terms of easiness of functioning, weaknesses, complications,

production methods, as well as their physical properties which include size, shape and design.

Even though there are many types of reactors, Barnard (1985) tried to show the most useful

three types of reactors which are batch reactors, tubular reactors and CSTRs. They have high-

lighted some of the industrial advantages and disadvantages of these reactors based on their

performance and treatment as well. Poulopouloset al. (2006) have shown different ways of

classifying reactors, and one way of doing this is to look at the number of reaction phases that

are allowed in, which may be homogeneous, means a single phase that is either liquid-phase or

gas-phase, heterogeneous, means two or three phases such as liquid-gas, liquid-solid, gas-solid,

and vice-versa among others. Salmiet al.(2010) showed types of reactors that may be classi�ed

based on catalyst scraps and are called catalytic reactors. Among them are �uidized beds when

these scraps are very tiny, trickle beds if scraps are immobile and slurry reactors if the catalyst

scraps are suspended in the �uid. Therefore, Table 1 shows the main three types of chemical

reactors which are commonly used in industries nowadays with the possibility of changing their

names as stated above.
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Table 1: Description of chemical reactors

Type working be-
haviour

Number of
phases

Reaction
types

Advantages Disadvantages

BATCH Reactants and
products are
supplied and
withdrawn
once respec-
tively

Homogeneous
and heteroge-
neous

Exothermic
and Endother-
mic

Easier to un-
derstand, low
cost and low
capital

Small con-
version scale
(most of
cookers),
not-�exible:
no possibility
to be changed
over

SEMI-
BATCH

It is a Batch
but either
reactants
or products
can be put
or removed
continuously

Homogeneous
and heteroge-
neous

Exothermic
and Endother-
mic

Medium �rm
tools, big in
size com-
pared to batch
reactors, tem-
perature and
concentration
prediction
within time,
some how
easier to con-
trol

Batch and
mid-CSTR,
not practica-
ble in many
reactions

CSTR Reactants
and product
are fed and
removed con-
tinuously

Homogeneous
and heteroge-
neous

Exothermic
and Endother-
mic

High conver-
sion scale, in-
dustrial tools,
practicable for
all most all re-
actions

Too complex
to predict and
control, nor-
mally operates
at steady-state

2.2 General Literature Review on CSTRs

In the past decades, CSTRs have gained research momentum whereby most scientists and chem-

ical engineers would like to know the theories and the mathematics behind these tanks due to

the complexity and non-linearity operational behaviour that are present in these reactors dur-

ing the production process (Naikwadet al., 2009). Discussions about CSTRs that are found

in literature seems to be broad, hence a non-exhaustive list of literature that consists of early

and recent research on the matters related to the topic has been reviewed. Among others we

have, robust feedback linearization of an isothermal continuous stirred tank reactor was con-

ducted by To�ghiet al. (2017) using mixed sensitivity synthesis and iteration approaches in the

presence of uncertainties. Also, the �rst-order and higher-order sliding mode observer methods

have been used in Osorioet al. (2011) to design and estimate states and unknown inputs of the
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CSTR, and it was shown that higher-order sliding mode may be adopted to reduce the noise into

the system compared to �rst-order sliding mode.

The Luenberger fuzzy observer, Luenberger fuzzy observer with sliding modes, Walcott-Zak

fuzzy observer and Utkin fuzzy observer were adopted and used as fault detection sensors of the

CSTR, the more details are found in Ballesteros-Moncadaet al.(2015). Again, a general model

of the CSTR was developed and the transient behaviour for irreversible non-linear polymer-

ization process in CSTR has been studied in Diaset al. (2005). Furthermore, a mathematical

model and simulation of reactors with production experiment of Hexane from Benzene were

performed in Prokopov́aet al. (2009). The experimental investigation of performance of CSTR

as bioreactor for producing biohydrogen from water melon waste in the anaerobic diegester

was done and explained in details by Cahyariet al. (2016). Zhanget al. (2013) identi�ed the

�ow behaviours in the CSTR trough three-dimensional computational �uids dynamics (CFD)

simulations. Furthermore, the effect of hydrodynamic shear on biogas production in the CSTR

were analysed and discussed in the study of Jianget al. (2016) using Metzner-Otto method.

The ef�cient Azo Dye colour identi�cation in the CSTR with the built-in bio-electrochemical

system was developed for Azo dye alizarin yellow R (AYR) which in turn help in wastewater

treatment as mentioned in the work of Cuiet al. (2016). The result has shown that the CSTR

bio-electrochemical system could serve as a good strategy to add more value to the conventional

existing anaerobic facilities compared to the refractory wastewater treatment approach. In the

same way, different types of reactors and types of reactions in chemical engineering processes

that may be used in production are widely de�ned and described in Nanda (2008). Limitations

of CSTRs' performance due to cooling jacket dynamics with both open and closed loops are

spoken out and discussed in the article of Russoet al. (1993).

The modelling and control of the CSTR were done based on a mixed logical dynamical model

which resulted in satisfactory performance of the tank as revealed in the work of Jingjinget al.

(2007). Another article on mathematical modeling and numerical simulations of two-phases

which are gas-liquid �ow in the CSTR was published by Karadimouet al. (2019). In addition,

the non-parametric and non-linear stochastic dynamical model together with the behavior anal-

ysis of a class of the single state isothermal CSTR was studied and analysed in Tronciet al.

(2009). Ahmedet al. (2013) used the cascade control strategy to control the temperature of the

exothermic CSTR with cooling jacket. The stability analysis of the system was investigated
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and achieved by using Routh-Hurwitz and Argand diagram. The adaptive method with recur-

sive identi�cation and the polynomial synthesis with placement of poles were applied on the

CSTR system by Vojteseket al. (2009) to study its dynamics, however, this method provided

inappropriate control responses and overshoots.

The problem of characterizing the global dynamics of a single state non-linear stochastic CSTR

system is addressed in Tronciet al. (2009) by using the Fokker-Plank as the state probability

distribution function, but the study of several state non-linear stochastic system is of paramount

as recommended in this article. The same approach of Fokker-Plank was applied for a two-state

stochastic CSTR system as can be observed in Shakeriet al. (2018). Moreover, the effect of

operating conditions on the CSTR's performance with saponi�cation experiment was conducted

in the research of Danishet al. (2015), and the result has shown that the increase in conversion

scale depends on the increase in CSTR's volume. Besides that, the dynamical behaviour of

the CSTR through a single �rst order reaction was researched on and analysed in the work of

Uppalet al.(1974). It was mentioned that this method is one of among the best methods for the

successful control of a system with the non-linearity behaviour.

Once more, the neural network approach was used to identify the dynamics of two-states namely

the temperature and the concentration of the CSTR's model and the method has provided rea-

sonable and precise results as can be found in Al-Araji (2015). The chemical process hazards,

causes and proposed measures of safety of batch and semi-batch processes are as well discussed

in Etchells (2005). In Karimiet al. (2015), the two-states CSTR stochastic model were studied

and analysed by using the approximate expectation maximization (AEM) and Bayesian algo-

rithms. It was revealed that Bayesian is an effective method to apply on CSTR's stochastic

models since it provided more accurate parameter estimates compared to AEM, and it is even

more applicable for an unknown system with a small number of data sets. López Buritićaet al.

(2015) used Monod and Haldane kinetics methods to perform the stability analysis of a system

that models the formation of bio�lms inside the CSTR during the waste-water treatment pro-

cess. Even though both methods performed well, still the Monod kinetics provided bio�lms

formation in a shorter time compared to the Haldane kinetics method. Likewise, the parameters

estimation of non-linear chemical and biological processes with non-measured variables from a

number of data sets was done by Janget al. (2011) using Bayesian approach with examples of

mammalian cell growth process, genetic regulatory network and JAK-STAT models.
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From Buehleret al. (2016), the Lyapunov-based stochastic non-linear model predictive control

was used to shape the state probability density functions in the CSTR with simple exothermic

reactionA k�! B . Rajagopalanet al. (1972) performed multivariate character and stability

analysis of irreversible exothermic CSTRs, and the signal �ow diagram and the equilibrium

states were determined by taking into consideration of �rst and second-order reactions. The

Bayesian approach was again used in Nicoulaud-Gouinet al. (2016) as the sorption parameters

identi�ability tool. The research outputs have shown that Bayesian inference is more preferable

for the analysis of CSTR experiments as per numerical identi�cation and sorption parameter

identi�cation as well. A modi�ed CSTR model for the neutralization process was studied and

analysed in the research of Ibrehem (2011). This CSTR model has been used to assess the

effects of strong acid (HCL) and strong base (NaOH) on the �ow rates of ionic concentrations

and more discussions are found in Ibrehem (2011). A one state variable precisely temperature of

a non-isothermal CSTR was analysed by using PID and Fuzzy logic controllers, and the results

from simulation and temperature control shown that Fuzzy logic is a good controller compared

to PID control as can be explored in Ramliet al. (2017).

However, due to the complexity and the non-linearity dynamical behaviour of CSTRs, the very

important problem that the researchers are eager to address is to �nd a good parameter variation

estimator for both deterministic and stochastic models. The identi�cation of reliable methods

that can provide converging solutions for a non-isothermal, four-states models of the perturbed

and deformed exothermic and endothermic CSTRs is also addressed in this research.
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