
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Computational and Communication Science Engineering Research Articles [CoCSE]

2020

Identification of the Time-Dependent

Point Source in a System of two

Coupled Two Dimension

Diffusion-Advection-Reaction Equations:

Application to Groundwater Pollution

Source Identification

Soko, Alpha Omega

Global Journal of Pure and Applied Mathematics

https://dx.doi.org/10.37622/GJPAM/16.3.2020.371-394

Provided with love  from The Nelson Mandela African Institution of Science and Technology



Global Journal of Pure and Applied Mathematics.
ISSN 0973-1768 Volume 16, Number 3 (2020), pp. 371-394
©Research India Publications
https://dx.doi.org/10.37622/GJPAM/16.3.2020.371-394

Identification of the Time-Dependent Point Source in a
System of two Coupled Two Dimension

Diffusion-Advection-Reaction Equations: Application to
Groundwater Pollution Source Identification

Alpha Omega Soko*a, Okelo Jeconiah Abonyob, and Verdiana Grace Masanjac

aDepartment of Mathematics, Pan African University Institute for Basic Sciences
Technology and Innovation (PAUSTI), Nairobi, Kenya.

bDepartment of Pure and Applied Mathematics, Jomo Kenyatta University of
Agriculture and Technology (JKUAT), Nairobi, Kenya.

cNelson Mandela African Institution of Science and Technology (NM-AIST), Arusha,
Tanzania.

Abstract

This paper addresses the inverse source problem in a system of two-dimension
advection-dispersion reaction equation with an emphasis on groundwater pollution
source identification. We develop an inverse source problem method for identifying
the unknown groundwater point sources utilizing only the boundary and interior
measurements. We develop an identifiability criterion of the point sources
from recording the oxygen deficit concentration relative to the biochemical
oxygen demand concentration. We have also established an identification method
that uses the records of oxygen deficit concentration and biochemical oxygen
demand concentration to identify the source position as a solution to nonlinear
dispersion current equations. We recover the source intensity function using the
multi-dimension inverse Laplace transform of the de-convolution function without
any need of an iterative process. The inverse Laplace transforms are approximated
by shifted Legendre Polynomials. The results show that the proposed inverse
problem method is accurate.
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1. INTRODUCTION

To measure groundwater quality, it is necessary to measure the composition of organic
matter mixed in the groundwater. There are many ways to measure the composition
of organic matter in water. Two of the methods used are Chemical Oxygen Demand
(COD) and Biochemical Oxygen Demand (BOD). BOD has been a useful indicator to
measure groundwater quality. BOD measures the amount of dissolved oxygen required
or consumed for the microbiological decomposition (oxidation) of organic material in
water[10, 1].

When measuring BOD, it requires five days due to laboratory treatment for the results
to be available [7]. The five days of waiting makes pollution source identification
impossible before this period. However, for some applications such as alerting a drinking
aquifer station about accidental groundwater pollution, it is essential to reduce this
waiting time in order to be effective since after the five days the conditions may have
changed and responding to the measured BOD may not be appropriate. This marks the
main objective of the present work, where the aim is to identify pollution sources using
the records of the Dissolved Oxygen (DO) concentration which have the advantage to be
available immediately. The mathematical modelling involves the BOD concentration
coupled with the Oxygen Deficit Concentration (ODC). The ODC is obtained as the
difference between the saturation DO concentration and the actual DO concentration in
the groundwater.

The present study is motivated by the results established in the papers [1, 6]. In
[1], an inverse source problem with only one 2D transport equation was analysed,
which correspond to the identification of pollution sources from recording the BOD
concentration data. We extend the work reported in [6] to the two-dimension system.
Unlike the one-dimension model of [6], we are interested in the inverse source problem
that consists of the identification of a spatial-temporal varying point source involved in a
system of two coupled 2D linear transport equations.

The originality of the present study consists in addressing the linear inverse source
problem of identifying unknown spatial-temporal point sources occurring in a 2D coupled
Advection Dispersion Reaction Equation (ADRE). Although the 2D mathematical model
is subject to a lot of interest, the identification of spatial-temporal point sources in the
2D coupled evolution transport equations remains an open problem.

The paper is organized as follows: Section 2 is devoted to stating the problem,
assumptions and proving a few technical results for later use. In Section 3, we construct
Green’s functions to use on the intensity identification. Section 4 is reserved to establish
an identification method that uses the ODC-BOD records to identify the elements
defining the point source. In Section 4.1 we provide methodology for the identification
of intensity function using the de-convolution function and the inverse Laplace transform.
The inverse Laplace transforms are approximated by the Shifted Legendre polynomials
(SLPs) in Section 4.1.1. Section 4.2 is devoted to source identification by locating roots
of dispersion current non-linear system of equations using Newton’s Method. Some
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numerical experiments on the groundwater pollution BOD-ODC coupled model are
presented in Section 5. We end the paper by providing the conclusion in Section 6.

2. GOVERNING EQUATION AND PROBLEM FORMULATION

The model concerns the measurement of pollutant concentration by the use of BOD5
values and ODC values denoted herein by C and ζ respectively. Let Ω ∈ R2 be any
connected open set with boundary ∂Ω. The boundary ∂Ω is the union of four disjoint
boundaries, that is, ∂Ω = Γ1 ∪Γ2 ∪Γ3 ∪Γ4 where Γ1 and Γ4 represents the inflow
and outflow boundaries respectively and Γ2∪Γ3 represents the lateral lower and upper
boundaries. Denote by ΓL the union of lateral boundaries, that is, ΓL = Γ2∪Γ3. The
BOD-ODC model is governed by the system of two coupled 2D linear Equations (2.1)
and (2.2) [10]:

∂ζ

∂ t
−∇ · (D∇ζ −V ·ζ )+R1ζ = R1C (2.1)

∂C
∂ t
−∇ · (D∇C−V ·C)+R2C = F(x, y, t) (2.2)

where C ,ζ are BOD and ODC concentrations measured in mg/L respectively, V is the
flow velocity measured in m/s, R1 and R2 are the reaction coefficients measured in s−1

, F represents the set of all occurring pollution sources measured in mgL−1s−1 and D
denotes the hydrodynamic dispersion tensor measured in m2/s.

Since the Equations (2.1) and (2.2) are the equations for the groundwater flow, they can
be further simplified by applying the following assumptions; firstly, the groundwater is
incompressible. Mathematically, this means that the density, ρ , of the groundwater is
constant and therefore the continuity equation takes Equation (2.3):

∂ρ

∂ t
+∇ · (ρV) = 0 ⇐⇒ ∇ ·V = 0 (2.3)

secondly, V satisfies the no slip boundary conditions which means that along lateral
boundaries, the groundwater has zero velocity relative to the boundary, that is,
Equation (2.4):

V = 0 on ΓL× (0, T ) (2.4)

Thirdly, the groundwater flow is irrotational meaning the flow with zero vorticity or net
rate of change of angular velocity in all directions is zero for the flow. Mathematically,
irrotational flow occurs when the cross gradient of the velocity is zero, that is,
Equation (2.5).

∇×V = 0 in Ω× (0, T ) (2.5)

Simplifying the Equations (2.1) and (2.2) using the Equation (2.3) gives Equations (2.6)
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and (2.7);

∂ζ

∂ t
+V ·∇ζ −∇ · (D∇ζ )+R1ζ = R1C (2.6)

∂C
∂ t

+V ·∇C−∇ · (D∇C)+R2C = F(x, y, t) (2.7)

For the reaction term, we use the BOD-DO relationships introduced by the United
States Environmental Protection Agency (USEPA) under the QUAL I model [11]. The
reaction term of the Equation (2.7) is the same as the reaction term from [4] that is, the
Equation (2.9). For ODC in Equation (2.6) it is given by Equation (2.8):

R1([DO]) = Ka ([DO]s− [DO])− (Kd +Ks) [BOD] (2.8)
R2([BOD]) = (Kd +Ks) [BOD] (2.9)

where [DO]s represents the concentration of saturated dissolved oxygen and Ka, Kd , Ks
are the re-aeration, de-oxygenation and sedimentation rates respectively.

Hydrodynamic dispersion refers to the stretching of a solute band in the flow direction
during its transport by an advecting fluid [12]. It occurs as a consequences of two
processes; molecular diffusion which results from the random molecular motion and
Mechanical dispersion which is caused by non uniform velocities. With these two
processes the hydrodynamic dispersion tensor is given by Equation (2.10):

D =

Dxx Dxy

Dyx Dyy

 (2.10)

where the spatially varying entries Dxx, Dyy, Dxy, Dyx are such that Equations (2.11)
to (2.13) holds [2, 9]:

Dxx =
aLν2

1 +aT ν2
2

||V||2
(2.11)

Dyy =
aT ν2

1 +aLν2
2

||V||2
(2.12)

Dxy =
(aL−aT )ν1ν2

||V||2
= Dyx (2.13)

Where aT and aL are the transverse and longitudinal dispersion coefficients respectively
and

||V||=
√

ν2
1 +ν2

2

As for the source function, F(x, y, t), we consider time-dependent point sources of the
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Equation (2.14);

F(x, y, t) = w(t)δ (x−Sx, y−Sy) (2.14)

where w(t) is the source intensity function, δ is the Dirac delta function, (Sx, Sy) is the
source location. For the initial condition, without loss of generality, the assumption that
no pollution occurs at the initial monitoring time is reasonable since at this time the
pollutant has yet to mix with the water. Thus a null initial BOD concentration. Since,
the pollutants are introduced on the boundaries not in the interior an assumption that
no pollution concentration on the rectangular domain of ∂Ω is reasonable. Finally, a
null gradient concentration at the downstream boundary which represent no variation
in BOD changes. Therefore, in view of the Equations (2.6) and (2.7), the BOD-ODC
concentrations satisfies the Equations (2.15) to (2.19):

∂ζ

∂ t
+V ·∇ζ −∇ · (D∇ζ )+R1ζ = R1C (2.15)

∂C
∂ t

+V ·∇C−∇ · (D∇C)+R2C = w(t)δ (x−Sx, y−Sy) (2.16)

C(x,y,0) = ζ (x,y,0) = 0 in Ω (2.17)
C(x,y, t) = ζ (x,y, t) = 0 on Γ1× (0, T ) (2.18)

∇C(x,y, t) = ∇ζ (x,y, t) = 0 on (ΓL∪Γ4)× (0, T ) (2.19)

The problem in the Equations (2.15) to (2.19) admits a unique solution denoted here by
the couple (C, ζ ) that belongs to the functional space given by Equation (2.20)[8];

C ∈ L2 (0, T ;L2(Ω)
)
∩C (0, T ;H−1(Ω)) and ζ ∈ C (0, T ;L2(Ω)) (2.20)

As the source position, (Sx, Sy), is assumed to be in the interior of the domain Ω, the
state ζ is smooth on the boundary ∂Ω, which allows to define the boundary observation
operator in the Equation (2.21):

M [F ] := {ζ (a, t), ζ (b, t) for 0 < t < T} (2.21)

where a and b are observation points satisfying 0 < a < b < l. This is called the direct
problem. The inverse problem the paper is dealing with is: assuming available the
records

{da(t),db(t) f or 0 < t < T} (2.22)

of the concentration C(x, y, t) at the two observation points a and b, find the source
function, F , such Equation (2.23)

M[F ] = {da(t),db(t) f or 0 < t < T} (2.23)

Theorem 2.1. Let Fi = wi(t)δ (x− Si
x, y− Si

y), for i = 1, 2 where wi(t) is a positive
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function of L2(0, T ). Assume that the source positions (Si
x, Si

y) are distinct. If
M(F1) = M(F2), then w1 = w2 and S1

x = S2
x , S1

y = S2
y .

Proof. Assume that the source positions (Si
x, Si

y) for i = 1, 2 are distinct. Let

Fi = wi(t)δ (x−Si
x, y−Si

y), for i = 1, 2

be the two sources which are giving rise to the same boundary observations. Let
Ci, ζi be the corresponding solutions of the Equations (2.15) to (2.19). Assume that
M(F1) = M(F2), we have to show that F1 = F2. Denote the differences C2−C1 and
ζ 2−ζ 1 by ϕ and ϑ respectively. Clearly (ϕ, ϑ) are solutions to the following system
of equations

∂ϑ

∂ t
+V ·∇ϑ −∇ · (D∇ϑ)+R1ϑ = R1ϕ (2.24)

∂ϕ

∂ t
+V ·∇ϕ−∇ · (D∇ϕ)+R2ϕ = w2(t)δ (x−S2)−w1(t)δ (x−S1) (2.25)

ϕ(x,y,0) = ϑ(x,y,0) = 0 in Ω (2.26)
ϕ(x,y, t) = ϑ(x,y, t) = 0 on Γ1× (0, T ) (2.27)

∇ϕ(x,y, t) = ∇ϑ(x,y, t) = 0 on (ΓL∪Γ4)× (0, T ) (2.28)

As the coefficients of the Equations (2.24) to (2.28) are all real analytic, then according
to Cauchy-Kovalevskaya theorem [13, p.15], the system of the Equations (2.24) to (2.28)
has a unique solution near zero. The remaining task is to show that the solution vanishes
on the neighbourhood of ∂Ω. Because of the delta function, we know that ϕ is identically
zero in Ω\

⋃
{S1, S2}, thus by Mizohata unique continuation theorem [14], we have ϕ = 0

in Ω\
⋃
{S1, S2}. Since Fi ∈ H−1−ε for ε > 0 then ϕ ∈ L2(Ω). Thus ϕ = 0 on Ω and

eventually, ϑ = 0. That implies F1 = F2 which is equivalent to having w1 = w2 and
S1 = S2.

For later use, we introduce SLPs due to [15], which are necessary in the inversion of
Laplace Transforms. The SLPs are orthogonal polynomials defined by the recurrence on
Equation (2.29)

Z0(t) = 1

Z1(t) = 2exp(−t/T )−1

Z2(t) = 6exp(−2t/T )−6exp(−t/T )+1

...
...

Zn+1(t) =
2n+1
n+1

[2exp(−t/T )−1]Zn(t)−
n

n+1
Zn−1(t) n≥ 1

(2.29)
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where T is an arbitrary constant. The shifted Legendre polynomials have the orthogonal
property given by Equation (2.30)

∫
∞

0
Zn(t)Zm(t)exp(−t/T )dt =


0, n 6= m

T
2n+1

, n = m

(2.30)

Any real function u(t) ∈ L2(Ω), can be expressed as a finite number of terms of the SLPs
as the Equation (2.31)

u(t) =
N−1

∑
i=0

αi exp(at)Zi(t) (2.31)

where exp(at) is the weighting function and the expansion coefficient αi is computed by
Equation (2.32)

αi =
2i+1

T

∫
∞

0
exp [−(a+1/T )t]u(t)Zi(t) (2.32)

The Equation (2.32) is obtained by minimizing the mean square error in the
Equation (2.33)

ε =

∫
∞

0

[
u(t)−

N−1

∑
i=0

αi exp(at)Zi(t)

]2

dt (2.33)

The Laplace Transform of a function u(t) is given by the Equation (2.34)

U(s) =
∫

∞

0
exp(−st)u(t) dt (2.34)

Making substitution of Equations (2.29), (2.30) and (2.34) into the Equation (2.32),
for i = 2, 3, . . . ,N−1 and n = 1, 2, . . . i−1, we obtain the shifted Legendre expansion
coefficient as the Equation (2.35)

αi =
2i+1

T

i

∑
n=0

σi,nU
(

a+
n+1

T

)
, (2.35)

where the coefficients σin are computed recursively using the Equation (2.36)

σ0,0 = 1, σ1,0 =−1, σ1,1 = 2, σi,0 =−σi−1,0, σi, i = [2(2i−1)σi−1, i−1] · i−1

σi,n = [(2i−1)(2σi−1,n−1−σi−1,n)− (i−1)σi−2,n] · i−1 (2.36)
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3. GREENS FUNCTION METHOD TO SOLVE DIRECT PROBLEM

Theorem 3.1. Let G = (G1, G2) be the Green’s Function of the Equations (2.15)
to (2.19). Then G satisfies:

−∂G1

∂ t
−V ·∇G1−∇ ·D∇G1 +R1G1 = δ (x−ξ )δ (y−η)δ (t− τ) (3.1)

−∂G2

∂ t
−V ·∇G2−∇ ·D∇G2 +R2G2 = δ (x−ξ )δ (y−η)δ (t− τ) (3.2)

G1(x,y,0;ξ ,τ,η) = G2(x,y,0;ξ ,τ,η) = 0 in Ω× (0, T )
(3.3)

G1(x,y, t;ξ ,τ,η) = G2(x,y, t;ξ ,τ,η) = 0 on (Γ1∪Γ4)× (0, T )
(3.4)

∇G1(x,y, t;ξ ,τ,η) = ∇G2(x,y, t;ξ ,τ,η) = 0 on ΓL× (0, T )
(3.5)

Proof. Let G = (G1, G2) be the Green’s function and let L1 and L2, be the linear
parabolic partial differential operators defined by the Equations (3.6) and (3.7):

L1[ζ ] =
∂C
∂ t

+V ·∇C−∇ · (D∇C)+R1C (3.6)

L2[C] =
∂ζ

∂ t
+V ·∇ζ −∇ · (D∇ζ )+R2ζ (3.7)

The non-homogeneous Equations (2.15) to (2.19) is equivalent to the Equations (3.8)
to (3.12):

L1[ζ ] = R1C (3.8)
L2[C] = w(t)δ (x−S) (3.9)

C(x,y,0) = ζ (x,y,0) = 0 in Ω (3.10)
C(x,y, t) = ζ (x,y, t) = 0 on Γ1× (0, T ) (3.11)

∇C(x,y, t) = ∇ζ (x,y, t) = 0 on (ΓL∪Γ4)× (0, T ) (3.12)

Let u1 =C and u2 = ζ . For i = 1, 2, the adjoint operator, L ∗
i for the Equations (3.8)

and (3.9) satisfies the Green’s Identity given by the Equation (3.13):

T∫
0

∫
Ω

GiLi [ui] dσξ dη =

T∫
0

∫
∂Ω

2

∑
α=1

∂

∂ξα

Mα(ui, Gi)n̂ dσξ dη +

T∫
0

∫
Ω

uiL
∗

i[Gi] dσξ dη

(3.13)

Where dσξ is the area element, dη is the time element and the function M(ui, Gi) is a
boundary term which involves the values of ui, Gi, and some of their partial derivatives
on the boundary. The boundary terms in the Equation (3.13) and L ∗

i are found by
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carrying out the integration by parts of the left-hand side with the given operator Li. At
the same time, Li[C] = w(t)δ (x−S) and Li[ζ ] = RC, this gives Adjoint operator in the
Equations (3.14) and (3.15);

L ∗
1 [G1] =−

∂G1

∂ t
−V ·∇G1−∇ ·D∇G1 +R1G1 (3.14)

L ∗
2 [G2] =−

∂G2

∂ t
−V ·∇G2−∇ ·D∇G2 +R2G2 (3.15)

The boundary terms are given by the Equation (3.16):

T∫
0

∫
∂Ω

2

∑
α=1

∂

∂ξα

Mα(ui, Gi) · n̂dσξ dη =

T∫
0

∫
∂Ω

uiGi · n̂dσξ dη +

T∫
0

∫
∂Ω

Gi (Vui−D∇ui) · n̂dσξ dη

+

T∫
0

∫
∂Ω

ui (D∇Gi) · n̂dσξ dη (3.16)

Depending on the choice of G, the Equation (3.13) provides the solution to the original
problem. Specifically, if, G, satisfies the Equations (3.17) and (3.18):

L ∗
1 [G1] = δ (x−ξ )δ (t− τ) (3.17)

L ∗
2 [G2] = δ (x−ξ )δ (t− τ) (3.18)

Then for i = 1, 2, the last term in Equation (3.13) is C and ζ respectively. The boundary
conditions of Equations (3.17) and (3.18) are obtained from Equation (3.16). Applying
boundary conditions in the Equations (3.10) to (3.12) on Equation (3.16) gives the
result.

4. METHOD FOR SOLVING THE INVERSE PROBLEM

4.1 Identification of the Unknown Source Intensity Function

For i = 1, 2, with the Green’s function satisfying Theorem 3.1, the left-hand side of
Equation (3.13) is just the integral of the greens function multiplied by the functions:
w(t)δ (x−S) and RC respectively. Thus the solution of the Equations (2.15) to (2.19) is
given by the Equations (4.1) and (4.2):

C(x, y, t) =
T∫

0

∫
Ω

G1(x, y, t;ξ , η , τ)w(τ)δ (ξ −Sx, η−Sy)dξ dη dτ (4.1)

ζ (x, y, t) =
T∫

0

∫
Ω

G2(x, y, t;ξ , η ,τ)R1C(ξ , η ,τ)dξ dη dτ (4.2)
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Before proceeding with the solution method, we first provide the definition of
multi-dimension Laplace transform of a function due to [3];

Definition 4.1. Let f (x, y, t) be a complex valued function of three real variables
x, y, and, t defined on the plane (0 ≤ x < ∞), (0 ≤ y < ∞), (0 ≤ t < ∞). Then the
3-dimensional Laplace transform of the function f (x, y, t) is defined in the Equation (4.3)

F(r, p ,q) =
∫

∞

0

∫
∞

0

∫
∞

0
e−rx−py−qt f (x, y, t)dxdydt (4.3)

Similarly, the inverse of the 3-dimensional Laplace transform F(r, p ,q) is given by the
Bromwich integral

f (x, y, t) =
1

(2πi)3

∫
α1+i∞

α1−i∞

∫
α2+i∞

α2−i∞

∫
α3+i∞

α3−i∞
F(r, p ,q)erx+py+qt drdqdp (4.4)

where the integration is done along the vertical plane ℜ(r, p ,q) = (α1, α2, α3) in the
complex plane such that (α1, α2, α3) is greater than the real part of all singularities of
F(r, p ,q) and F(r, p ,q) is bounded on the plane.

Immediate use of the Definition 4.1, Theorem 4.2 follows which is about BOD generation
from utilizing the oxygen deficit, ODC.

Theorem 4.2. Let, r, p, q, be the complex numbers, G2(x, y, t;r, p, q) and ζ (r, p, q) be
the three-dimension Laplace transform of G2(x, y, t;x, y, t) and ζ (x, y, t) respectively,
that is, Equation (4.5).

G2(x, y, t;r, p, q) =
∫

∞

0

∫
∞

0

∫
∞

0
e−qτ−pη−rξ G1(x, y, t;ξ , η ,τ)dξ dη dτ

ζ (r, p, q) =
∫

∞

0

∫
∞

0

∫
∞

0
e−qτ−pη−rξ

ζ (ξ , η , τ)dξ dη dτ

(4.5)

The BOD concentration, C(x, y, t), is given by the Equation (4.6)

C(x, y, t) =
1

(2πi)3

∫
α1+i∞

α1−i∞

∫
α2+i∞

α2−i∞

∫
α3+i∞

α3−i∞

(
ζ (r, p, q) · p ·q · r

R1G2(x, y, t;r, p, q)

)
erx+py+qt drdqdp

(4.6)

Proof. Applying the three-dimension Laplace transform of Equation (4.2) both sides
and using the Laplace transform convolution theorem gives Equation (4.7)

ζ (r, p, q) =
R1

pqr
G2(x, y, t;r, p, q)C(r, p, q) (4.7)

Making C(r, p, q) subject of the formulae and talking three-dimension inverse Laplace
transform in the Equation (4.7) gives the result.

Since C(x, y, t) has been determined by Theorem 4.2, the source intensity function
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w(t) is found by solving Equation (4.1) using the C(x, y, t). The result is given by
Theorem 4.3.

Theorem 4.3. Let, q, be a complex number, G1(x, y, t;Sx, Sy, q) and C(x, y, q)
be the Laplace Transform of G1(x, y, t;ξ , η ,τ) and C(x, y, t) respectively, that is,
Equation (4.8)

G1(x, y, t;Sx, Sy, q) =
∫

∞

0
e−qτ G1(x, y, t;ξ , η ,τ)dτ

C(x, y, q) =
∫

∞

0
e−qτ C(x, y, τ)dτ

(4.8)

provided that the Laplace Transforms exist, then the intensity function w(t) is given by
the Equation (4.9)

w(t) =
1

2πi

∫
α+i∞

α−i∞

(
C(x, y, q)

G1(x, y, t;Sx, Sy, q)

)
eqt dq (4.9)

Proof. Simplifying the Equation (4.1) by using the dirac delta shifting property gives
the Equation (4.10)

C(x, y, t) =
∫ T

0
w(τ)G1(x, y, t;Sx, Sy, τ)dτ (4.10)

Talking Laplace Transform both sides of the Equation (4.10) and using the convolution
property of the Laplace integral transform gives Equation (4.11)

C(x, y, q) =
∫

∞

0
e−qt

(∫ T

0
w(τ)G1(x, y, t;Sx, Sy, τ)dτ

)
dt = w(q)G1(x, y, t;Sx, Sy, q)

(4.11)

Making w(q) subject of the formulae and talking inverse Laplace transform in the
Equation (4.11) gives the result.

4.1.1 Calculation of the Inverse Laplace Transform

In this section, we apply the SLPs method to approximate Equation (4.6). The result of
this section is summarized in Theorem 4.4

Theorem 4.4. Let Q(r, p, q) be a continuous function composition of the
three-dimension Laplace transform given by the Equation (4.12)

Q(r, p, q) =
(

ζ (r, p, q) · p ·q · r
R1G2(x, y, t;r, p, q)

)
(4.12)

Let Q(x, y, t) be its inverse transform. The inverse Laplace transform of Equation (4.6)
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is approximated by the Equation (4.13)

C(x, y, t) =
N1−1

∑
i=0

N2−1

∑
i=0

N3−1

∑
i=0

αi, j,k exp(a1x+a2y+a3t) Zi(x)Z j(y)Zk(t) (4.13)

where exp(a1x+a2y+a3t) is the weighting function and the SLPs expansion coefficient
αi, j,k is given by Equation (4.14)

αi, j,k =
(2i+1)(2 j+1)(2k+1)

T1T2T3

i

∑
g1=0

j

∑
g2=0

k

∑
g3=0

σi,g1σ j,g2σk,g3

Q
(

a1 +
g1 +1

T
, a2 +

g1 +1
T

, a3 +
g1 +1

T

)
(4.14)

where T1, T2 and T3 are the arbitrary constants, and the elements σi,g1 , σ j,g2, and σk,g3

are computed based on Equation (2.36).

Proof. Consider the Laplace transformation in three variables given by

Q(r, p, q) =
∫

∞

0

∫
∞

0

∫
∞

0
e−rx−py−qtQ(x, y, t)dxdydt (4.15)

Using the SLPs, the inverse Laplace transform of Q(r, p, q) is approximated by
Equation (4.16):

Q(x, y, t) =
N1−1

∑
i=0

N2−1

∑
i=0

N3−1

∑
i=0

αi, j,k exp(a1x+a2y+a3t) Zi(x)Z j(y)Zk(t) (4.16)

where exp(a1x+a2y+a3t) is the weighting function and the SLPs expansion coefficient
αi, j,k is obtained by the minimization of the integrable mean square error as in
Equation (2.33). Thus the minimum is given by Equation (4.17)

αi, j,k =
(2i+1)(2 j+1)(2k+1)

T1T2T3

∫
∞

0

∫
∞

0

∫
∞

0
exp(−(a1 +1/T1)x− (a2 +1/T2)y

− (a3 +1/T3)t)Q(x, y, t)Zi(x)Z j(y)Zk(t) dx dy dt (4.17)

Using Equations (2.29), (2.30), (2.36) and (4.16), Equation (4.17) is approximated by
Equation (4.18)

αi, j,k =
(2i+1)(2 j+1)(2k+1)

T1T2T3

i

∑
g1=0

j

∑
g2=0

k

∑
g3=0

σi,g1σ j,g2σk,g3

Q
(

a1 +
g1 +1

T
, a2 +

g1 +1
T

, a3 +
g1 +1

T

)
(4.18)

where the terms σi,g1σ j,g2σk,g3 are computed based on Equation (2.36). Comparison of
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the function formulation of Q(r, p, q) and the function C(x, y, t) confirms the proof.

4.2 Localization of the source position

In this section we use an iterative method to determine the source position (Sx, Sy). For
that we have the Theorem 4.5.

Theorem 4.5. Let V⊥ = (−ν2, ν1)
T be the perpendicular vector to V and let the

functions, ψ(x, y), ψ(x, y)⊥ ∈ L2(Ω), be two dispersion current functions defined in Ω.
Provided that ψ(x, y), andψ(x, y)⊥ satisfy the Equations (4.19) and (4.20);

D∇ψ +V = 0 (4.19)

Dψ
⊥+V⊥ = 0 (4.20)

then the source position in the Equation (2.16) is given by the Equation (4.21);

Sk+1 = Sk +
a2

L
||V||2


ν1(Sk)

(
ψ(Sk)− ln

(
Peψ

P0

))
−ν2(Sk)

(
ψ⊥(Sk)−

P
ψ⊥

P0

)

ν2(Sk)

(
ψ(Sk)− ln

(
Peψ

P0

))
+ν1(Sk)

(
ψ⊥(Sk)−

P
ψ⊥

P0

)


(4.21)

where the coefficients Peψ , P
ψ⊥, andP0 are given by the Equations (4.22) to (4.24);

P0 =

T∫
0

w(t)eR1t dt (4.22)

Peψ = eR1T
∫
Ω

eψ(x,y)c(x,y,T ) dx dy−
T∫

0

∫
Γ1

eR1t+ψD∇c · dΓ dt (4.23)

P
ψ⊥ = eR1T

∫
Ω

ψ
⊥(x,y)c(x,y,T ) dx dy+

T∫
0

∫
Γ4

ceR1t [ψ⊥V−DV⊥] · dΓ dt (4.24)

−
T∫

0

∫
ΓL

ceRtDV⊥ · dΓ dt−
T∫

0

∫
Γ1

eRt
ψ
⊥D∇c · dΓ dt

Proof. Using the Equations (2.11) to (2.13), the determinant of the matrix D is given
by det(D) = aLaT 6= 0. Since the determinant of D is nonzero, then D is invertible.
Therefore, there exists a unique vector field, A, which is a solution to the linear system
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DA+V = 0. Moreover, we have Equation (4.25):

D−1 =
1

det(D)

 Dyy −Dxy

−Dyx Dxx

⇒ A =
−1

aLaT

Dyyν1−Dxyν2

Dxxν2−Dyxν1

=− V
aL

(4.25)

Using Equation (2.5), it implies that A is a gradient field derived from the scalar potential
ψ(x, y) that solves Equation (4.26);

D∇ψ +V = 0 (4.26)

Similarly, using the vector V⊥ = (−ν2, ν1)
T , we have the function, ψ⊥(x, y) that solves

Equation (4.27);

D∇ψ
⊥+V⊥ = 0 (4.27)

For (a, b) ∈ Ω, the condition ψ(a, b) = ψ⊥(a, b) = 0 gives the solutions of the
Equations (4.26) and (4.27) by the Equations (4.28) and (4.29) respectively.

ψ(x, y) =−
x∫

a

1
aL

ν1(η , y)dη−
y∫

b

1
aL

ν2(x, ξ )dξ (4.28)

ψ(x, y)⊥ =

x∫
a

1
aT

ν2(η , y)dη−
y∫

b

1
aT

ν1(x, ξ )dξ (4.29)

Using the Equations (4.28) and (4.29), define the functions in the Equation (4.30);

z(x, y, t) = eRtu(x, y) for u(x, y) =
{

eψ , ψ
⊥
}

(4.30)

which are solutions to the homogeneous adjoint Equation (4.31);

−∂ z
∂ t
−V ·∇z−∇ ·D∇z+R2z = 0 (4.31)

Multiply Equation (2.16) by z(x, y, t) and integrate by parts over Ω× (0, T ) with the
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boundary conditions Equations (2.17) to (2.19) gives the Equation (4.32);

T∫
0

w(t)z(Sx, Sy, t)dt =
∫
Ω

c(x,y,T )z(x,y,T ) dx dy

+

T∫
0

∫
Γ4

c[zV+D∇z] · dΓ dt+
T∫

0

∫
ΓL

cD∇z · dΓ dt

−
T∫

0

∫
Γ1

zD∇c · dΓ dt (4.32)

where on the lateral boundary, Equation (2.4), has been used. From substituting
Equation (4.30) into the Equation (4.32), it follows that the unknown element (Sx, Sy)
defining the position of the source is given by Equation (4.33);

u(Sx, Sy)

T∫
0

w(t)eRt dt = eRT
∫
Ω

c(x,y,T )u(x,y) dx dy

+

T∫
0

∫
Γ4

ceRt [uV+D∇u] · dΓ dt+
T∫

0

∫
ΓL

ceRtD∇u · dΓ dt

−
T∫

0

∫
Γ1

eRtuD∇c · dΓ dt (4.33)

Using Theorem 4.3, the intensity function on the left-hand side of the Equation (4.33) is
known. By substituting u(x, y) =

{
eψ , ψ⊥

}
in the Equation (4.33), a non-linear system

of the Equation (4.34) results.
ψ(Sx, Sy) = ln

(
Peψ

P0

)
ψ⊥(Sx, Sy) =

P
ψ⊥

P0

(4.34)

where the coefficients, Peψ , P0 and P
ψ⊥ in the Equation (4.34) are given by the

Equations (4.22) to (4.24). Newton’s method is used on the Equation (4.34) to determine
the zero of the associated vector function. Using Equations (4.26) and (4.27) for the
expressions ∇ψ and ∇ψ⊥ respectively, the Jacobian matrix JΛ associated to the vector
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function Λ = (ψ, ψ⊥)T is given by the Equation (4.35);

JΛ =


∂ψ

∂x
∂ψ

∂y
∂ψ⊥

∂x
∂ψ⊥

∂y

=
1
aL

−ν1 −ν2

ν2 −ν1

 (4.35)

The determinant, det(JΛ) of the 2×2 Jacobian matrix is given by the Equation (4.36);

det(JΛ) =
∂ψ

∂x
∂ψ⊥

∂y
− ∂ψ

∂y
∂ψ⊥

∂x
=
||V||2

a2
L

> 0 (4.36)

Thus the 2×2 Jacobian matrix is invertible in Ω and the inverse of the Jacobian matrix
is given by Equation (4.37);

J−1
Λ

=
a2

L
||V||2

−ν1 ν2

−ν2 −ν1

 (4.37)

Given an initial guess, (Sx, Sy), for k > 0, Equation (4.37) leads to perform the
Newton’s iterations to determine the unique solution of the Equation (4.34). We iterate
Equation (4.38)

(Sk+1
x , Sk+1

y ) = (Sk
x, Sk

y)− J−1
Λ

(Sk
x, Sk

y)

ψ(Sk
x, Sk

y)− ln
(

Peψ

P0

)
ψ⊥(Sk

x, Sk
y)−

P
ψ⊥

P0

 (4.38)

Substitution of Equation (4.37) into Equation (4.38) with Sk = (Sk
x, Sk

y) gives
Equation (4.21).

Then, for the clarity of our presentation we summarize the different steps of the
established identification method in the Algorithm 1
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Algorithm 1 Source Computation Algorithm
1: procedure SOURCE COMPUTATION(w(t),S) . Computes The source Elements w(t), S
2: a1, a2, a3← R3

+ . Initialize the Weights
3: N1, N2, N3← N3 . Initialize the number of terms
4: for all i, j, k such that i≤ N1−1, j ≤ N2−1, k ≤ N3−1 do
5: σi,g1σ j,g2σk,g3 ← Equation (2.36) . Compute the terms
6: αi, j,k← Equation (4.14) . Computes the Laplace Coefficients
7: end for
8: C(x, y, t)← Equation (4.13) . Computes the BOD Using ODC
9: w(t)← Equation (4.9) . Compute the intensity by using Equation (2.31)

10: Peψ , Pψ⊥ , P0← Equations (4.22) to (4.24) . Computes Using Trapezoidal Rule
11: S0← R2 . Initial Source Position
12: prec← R . The precision to use in the Newtons Method
13: while true do . Start Of the Newtons Method
14: Sk+1← Equation (4.21) . Compute the Source
15: if |Sk+1−S|< prec then
16: break
17: end if
18: end while
19: return w(t),S . The Source Intensity and Position
20: end procedure

5. NUMERICAL RESULTS AND DISCUSSION

In this section, we carry out numerical experiments in the case of a square domain
defined by the Equation (5.1):

Ω = {(x, y) such that 0 < x < L and 0 < y < L} (5.1)

For the numerical computation, the domain Ω is scaled up according to the
non-dimensional variables in the Equation (5.2):

x̃ =
x
L
, ỹ =

y
L
, S̃ =

S
L
, Ṽ =

V
L
, D̃ =

D
L2 , C̃ =C, w̃ =

w
L2 , R̃ = R, t̃ = t (5.2)

Substituting the variables Equation (5.2) in Equations (2.15) to (2.19) gives
Equations (5.3) to (5.7);

∂ ζ̃

∂ t̃
+ Ṽ · ∇̃ζ̃ − ∇̃ ·

(
D̃∇̃ζ̃

)
+ R̃1ζ̃ = R̃1C̃ (5.3)

∂C̃
∂ t̃

+ Ṽ · ∇̃C̃− ∇̃ ·
(
D̃∇̃C̃

)
+ R̃2C̃ = w̃(t̃)δ (x̃− S̃x, ỹ− S̃y) (5.4)

C̃(x̃, ỹ,0) = ζ̃ (x̃, ỹ,0) = 0 in Ω (5.5)

C̃(x̃, ỹ, t̃) = ζ̃ (x̃, ỹ, t̃) = 0 on Γ1× (0, T ) (5.6)

∇̃C(x̃, ỹ, t̃) = ∇̃ζ (x̃, ỹ, t̃) = 0 on (ΓL∪Γ4)× (0, T ) (5.7)



388 Alpha Omega Soko et al.

We employ in Equations (5.3) to (5.7) the coefficients in Equation (5.8)

L = 1000m, aT = 10m, aL = 0.2m, R̃ = 2.2×10−6s−1 (5.8)

For the velocity field, we employ the field defined in Ω by Equation (5.9)

V =


−
(

βe(
πx
L )−αe(−

πx
L )
)

V̄ cos
(

πy
L

)
+V0(

βe(
πx
L ) +αe(−

πx
L )
)

V̄ sin
(

πy
L

) (5.9)

where β , α,V0, andV̄ are real numbers. The velocity in the Equation (5.9) satisfies the
required conditions introduced in the Equations (2.3) and (2.5). Using a = b = 0 and
making substitution of Equation (5.9) into the Equations (4.28) and (4.29), the dispersion
current functions are given by the Equations (5.10) and (5.11)

ψ =
L

πaL

[
−V0πx−

((
α +β −2(α +β )e(

πx
L )
)

cos
(

πy
L

)
+(α +β )e(

πx
L )
)

V
]

(5.10)

ψ
⊥ =

L
πaT

[
−V0πy+

(
α−β −2(α−β )e(

πx
L )
)

V sin
(

πy
L

)]
(5.11)

As for the non-dimensional variables in the Equations (5.3) to (5.7), we employ uniform
mesh sizes ∆x = Nx and ∆y = 1/Ny with a constant time-step ∆t = 1/Nt and use Finite
Volume Method (FVM). To carry out numerical experiments, in the Equation (5.9), we
employ the coefficients V0 = 0.70, V̄ = 10−2, α = 1.0 and β = exp(100π). We use a
mesh with Nx = 100 and Ny = 10 whereas Nt = 180. To generate the boundary records
da(t),db(t) introduced in Equation (2.22), we solve Equations (5.3) to (5.7) using FVM,
where the time-dependent intensity function is defined by Equation (5.12);

w(t) =
3

∑
i=1

bie−ui(t−qi)
2

(5.12)

where b1 = 1.2, b2 = 0.4, b3 = 0.6, u1 = 10−6, u2 = 5× 10−5, u3 = 10−6, q1 =
4.5×103,q2 = 6.5×103,q3 = 9×103. The intensity function is monitored for a period
of T = 14400s (4hours). For the simulation we use the mean value of the intensity
function defined by Equation (5.13);

1
T

T∫
0

w(t)dt =
√

π

2T

3

∑
k=1

bk√
uk

[erf(
√

uk(t−qk))− erf(−√ukqk)] (5.13)

where

erf(θ) =
∫

θ

0
e−s2

ds,
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is the Gauss error function. As far as the source position S = (Sx, Sy) is concerned, we
employ the approximation of the Dirac mass in Equation (5.14) [5];

δ (x−Sx, y−Sy)≈
(

1+ cos(π(x−Sx))
2ε

)(
1+ cos(π(y−Sy))

2ε

)
(5.14)

We set the parameter, ε = 10−5 in Equation (5.14). Theorem 2.1 allows us to uniquely
identify the unknown elements Sx, Sy and w(t) defining F in the Equation (2.14) that
generated the observations Equation (2.21). In the sequel, we present numerical solution
of the dimensionless problem Equations (5.3) to (5.7) obtained using the FVM. The
numerical results presented in Table 5.1 show the simulated BOD and ODC used for
the source identification. In the last column of Table 5.1, we compute the absolute
differences of the simulated BOD and ODC that is abs(BOD−ODC).

Table 5.1: Differences between simulated BOD and ODC

Simulated Oxygen Deficit Simulated BOD Data Absolute Differences

1 0.095527 0.087149 0.008377

2 0.075835 0.068769 0.007066

3 0.061037 0.055357 0.005680

4 0.050232 0.045578 0.004654

5 0.042355 0.038449 0.003906

6 0.036614 0.033254 0.003360

7 0.032431 0.029468 0.002963

8 0.029382 0.026709 0.002673

9 0.027162 0.024700 0.002462

10 0.025544 0.023236 0.002309

11 0.024366 0.022170 0.002197

12 0.023509 0.021393 0.002115

13 0.022884 0.020828 0.002056

14 0.022429 0.020416 0.002013

15 0.022098 0.020117 0.001981
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To identify the source, we apply the detection-identification method developed in the
previous sections by following the steps described in Algorithm 1. To this end, we
initialize the weights a1 = 0.05, a2 = 0.4, a3 = 4 and the number of terms for the
summation N1 = 100, N2 = 10, N3 = 180. The weights and the number of terms are
used in the Loop to calculate the coefficients in the lines 4 to 6 of the Algorithm 1.

To compute the BOD using ODC, we first compute the Green’s Function and the
ζ (x, y, t) for Equations (5.3) to (5.7) using FVM by solving Equations (3.1) to (3.5) and
Equations (5.3) to (5.7) respectively. Then we use Equation (4.12) of which the BOD is
completely determined by step 8 of the Algorithm 1. Figure 5.1 shows the numerical
solution of the Green’s function equation.

Figure 5.1: The Green’s Function For the System

The intensity function w(t) is computed from step 9 of the Algorithm 1. Finally, to
compute the source position, the integrals Peψ , P

ψ⊥, P0 are computed using trapezoidal
rule in step 10 of the Algorithm 1. Using 10 initial source positions, S0, and a precision
of 0.01, we compute the source positions using the Newtons Method as outlined in lines
13 to 18 of the Algorithm 1. Figures 5.2 to 5.7 shows the computed intensity functions
at various source positions.
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Figure 5.2: Intensity Source at (100,100) Figure 5.3: Intensity Source at (200,80)

Figure 5.4: Intensity Source at (600,450) Figure 5.5: Intensity Source at (80,800)

Figure 5.6: Intensity Source at (1000,90) Figure 5.7: Intensity Source at (80,1200)
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In Table 5.2 we give the recovered source positions corresponding to different initial
source positions

Table 5.2: Locations of Simulated Source Positions and Identified Source Positions

Used source position Identified source position

1 S =(80, 800) S = (83.5171, 791.6173)

2 S = (90, 1000) S = (90.0677, 1010.8674)

3 S = (100, 1200) S = (80.3909, 1539.9904)

4 S = (200, 450) S = (197.7977, 451.4966)

5 S = (300, 80) S = (299.959, 76.353)

6 S = (600, 100) S = (499.517, 119.116)

7 S = (800, 60) S = (790.5319, 59.6309)

8 S = (900, 300) S = (864.7572, 289.6473)

9 S = (1000, 700) S = (889.4533, 644.9977)

10 S = (1200, 900) S = (1433.1591, 833.3395)

The numerical results presented in Table 5.2 show that the inverse source identification
method established enables to identify the source position with very good accuracy. The
observed error on the identified source position are due to the fact that BOD records
are not generated by a point source, that is, Dirac delta function but rather by its
approximation given in Equation (5.14). The second error is due to the approximation of
integrals involved in the coefficients P0,Peψ and P

ψ⊥ found in Equations (4.22) to (4.24)
respectively. However, for the identified source intensity function w(t), the analysis of
the numerical results presented in Figures 5.2 to 5.7 indicates that the error becomes
more significant with time. This could be explained by the fact that w(t) is identified
from solving the deconvolution problem introduced in Equation (4.9). Therefore, for
each ti ∈ (0, T ), the identification of w(ti) is affected by the errors introduced on the
used BOD.

6. CONCLUSION

A solution of an inverse source problem for identification of the time-dependent point
source has been obtained in this study. The solution involved application of a system of
two coupled 2D ADRE to groundwater source identification. Validation of the model was
demonstrated by using hypothetical examples as there was no oxygen deficit data in the
literature. To generate the hypothetical data FVM was used to solve the forward problem
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and approximation made at discreet points. Numerical experiments on the simulated
BOD data were carried out. The obtained numerical results shows that the developed
identification method is accurate. In this paper, we only considered the transport of
the pollutant in the groundwater without considering groundwater flow. An outlook
for the results established in the present study is their extension towards at least the
following directions: Firstly, incorporating groundwater flow equations for the transport
of groundwater, ADRE for the transport of the pollutants and solitary vibrations available
on the interaction between groundwater and surface water. Secondly, apply the developed
identification method using other reference geometries and real-life measurements taken
on a flow crossing a monitored domain of arbitrary geometric shape. Thirdly, treat the
three-dimensional case for the ADRE. Finally, apply the developed methodology into
other applications.
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